INVENTARIO DE EMISIONES DE CONTAMINANTES CRITERIO Y GASES DE EFECTO INVERNADERO
ESTADO DE OAXACA, MÉXICO
2008

Agosto 2011
ÍNDICE

I. INVENTARIO DE EMISIONES DEL ESTADO DE OAXACA, MÉXICO 2008 7

I.1 Consumo de Energía (PJ) ... 7
 I.1.1 Sector Eléctrico ... 13
 I.1.2 Potencial de Generación de Energías Renovables ... 16
 I.1.3 Sector Transporte ... 19

I.2 Inventario Estatal de Contaminantes Criterio ... 25

I.3 Inventario Estatal de Gases de Efecto Invernadero de Oaxaca (GEI) 29

II. CUENCAS ATMOSFÉRICAS ... 38

III. PROCEDIMIENTOS DE CÁLCULO .. 50

III.1 Definición de cuencas atmosféricas ... 50
 III.1.1 Criterios Metodológicos para la delimitación cuencas atmosféricas a nivel regional ... 52

III.2 Procedimiento para determinar el consumo de energía .. 53
 III.2.1 Recopilación de datos ... 53
 III.2.2 Procesamiento y análisis de la información ... 54

III.3 Procedimiento para elaborar un Inventario de Gases de Efecto Invernadero 56
 III.3.1 Gases evaluados .. 58
 III.3.2 Energía .. 58
 III.3.3 Procesos industriales ... 59
 III.3.4 Agricultura, ganadería, uso de suelo y vegetación ... 60
 III.3.5 Estimación de emisiones por Agricultura y Ganadería .. 66
 III.3.6 Estimación de emisiones por Incendios Forestales .. 69
 III.3.7 Residuos Sólidos .. 69

IV. REFERENCIAS BIBLIOGRÁFICAS ... 70

TABLAS

Tabla 1. Principal Infraestructura de Producción de Hidrocarburos. .. 9
Tabla 2. Refinerías en el Estado de Oaxaca .. 10
Tabla 3. Consumo de Petrolíferos por Sector, 2009 [PJ] ... 10
Tabla 4. Datos de vivienda y energía en Oaxaca ... 11
Tabla 5. Características de las Principales Centrales Generadoras de Energía Eléctrica del Sector Público en Oaxaca .. 13
Tabla 6. Características de las Principales Centrales de Cogeneración y Autoabastecimiento en Oaxaca ... 14
Tabla 7. Indicadores de Consumo de Energía Eléctrica en Oaxaca, 20083 15
Tabla 8. Capacidad Instalada de Proyectos Eólicos en el Istmo de Tehuantepec, Oaxaca 18
Tabla 9. Parque vehicular en Oaxaca, 2008... 20
Tabla 10. Aeropuertos en Oaxaca y pasajeros transportados, 2008 ... 21
Tabla 11. Operación en el Puerto Marítimo Salina Cruz, Oaxaca (Cabotaje) 23
Tabla 12. Operación de exportación en el Puerto Marítimo Salina Cruz, Oaxaca (Altura) 23
Tabla 13. Operación de importación en el Puerto Marítimo Salina Cruz, Oaxaca (Altura) 24
Tabla 14. Operación del Puerto Turístico de Bahías de Huatulco, Oaxaca 2008 24
Tabla 15 Emisiones de contaminantes criterio por tipo de fuente, Oaxaca 2008 26
Tabla 16 Participación porcentual por tipo de fuente, Oaxaca 2008 .. 26
Tabla 17. Potencial de Calentamiento Global considerados por el Protocolo de Kioto ... 29
Tabla 18. Inventario Estatal de Gases de Efecto Invernadero de Oaxaca, 2008 ... 30
Tabla 19 Emisiones desagregadas por tipo de categoría y sub-categoría de GEI ... 31
Tabla 20. Uso de suelo en Oaxaca ... 33
Tabla 21. Variación de Carbono en Oaxaca .. 35
Tabla 19. Incendios forestales registrados en Oaxaca, 2008 ... 36
Tabla 23. Población ganadera del estado de Oaxaca, 2008 ... 36
Tabla 24. Identificación de las cuencas atmosféricas de Oaxaca ... 39
Tabla 25. Características de las cuencas atmosféricas de Oaxaca .. 40
Tabla 26. Características de Inventario de emisiones de Gases de Efecto Invernadero (GEI) 57
Tabla 27. Emisiones de gases efecto invernadero en el sector energía ... 59
Tabla 28. Factores de emisión por fermentación entérica para el método de nivel 1 (kg CH₄/cabeza-año) 67
Tabla 29. Factores de emisión para estimar el metano por manejo de estiércol de ganado (Kg CH₄/cabeza-año) ... 68
Tabla 30. Factores de emisión utilizados para incendios forestales .. 69

FIGURAS

Figura 1. Consumo de Combustibles Fósiles, 1999-2009 ... 8
Figura 2. Participación Porcentual en el Consumo de Energéticos Fósiles en México .. 9
Figura 3. Porcentaje de Consumo de Petrolíferos por Sector, 2009 .. 11
Figura 4. Porcentaje de Capacidad de Generación de Energía por Tecnología, 2009 ... 14
Figura 5. Porcentaje de Generación de Energía Eléctrica por Tecnología, 2009 .. 15
Figura 6. Evolución de ventas (MWh) por tipo de usuario .. 16
Figura 7. Ubicación de Proyectos Eólicos en el Istmo de Tehuantepec, Oaxaca ... 17
Figura 8. Contribución porcentual por tipo de fuente, 2008 .. 27
Figura 9. Distribución porcentual de contaminantes criterio en el estado de Oaxaca por tipo de fuente, 2008 28
Figura 10. Participación porcentual de gases de efecto invernadero por categoría en el estado de Oaxaca, 2008 37
Figura 11. Cuencas atmosféricas en Oaxaca, 2008 .. 41
Figura 12. Altura de mezclado .. 50
Figura 13. Niveles de gestión de calidad del aire .. 51
Figura 14. Transporte regional de Sulfatos a nivel sinóptico ... 52
Figura 1. Cambio de uso de suelo en Oaxaca, 1976-2008 ... 61
Figura 16. Diagrama de flujo para la categoría AFOLU ... 64
Figura 17. Diagrama de flujo el procedimiento del cálculo de emisiones de cambio de uso de suelo y ganadería y agricultura ... 65
I. INVENTARIO DE EMISIONES DEL ESTADO DE OAXACA, MÉXICO 2008

El estado de Oaxaca se localiza en la región suroeste del pacífico mexicano, a una altitud de mil 558 metros sobre el nivel medio del mar. Limita al norte con Puebla y Veracruz, al este con Chiapas y al Oeste con Guerrero. Tiene una superficie territorial de 95 mil 364 kilómetros cuadrados; lo que representa el 4.8% del total nacional. Posee además, una superficie náutica de 11 mil 351 kilómetros cuadrados y forma parte del Istmo de Tehuantepec. Por su extensión, Oaxaca ocupa el quinto lugar del país después de los estados de Chihuahua, Sonora, Coahuila y Durango.

Los 570 municipios en que se divide el estado se integran, de acuerdo a su conformación política, económica y social, en 8 regiones geoeconómicas: Cañada, Costa, Istmo, Mixteca, Papaloapan, Sierra Norte, Sierra Sur y Valles Centrales; siendo su capital la ciudad de Oaxaca de Juárez, considerada Patrimonio Cultural e Histórico de la Humanidad.

En este estado habitan un total de 3.8 millones de personas, lo que representa el 3.4% de la población total del país.

Durante el 2008, el Producto Interno Bruto de Oaxaca alcanzó cerca de 128 mil millones de pesos (a pesos de 2003), equivalente al 2% del PIB Nacional, siendo sus principales actividades económicas:

- **Agricultura.** Se cultiva maíz, sorgo, cacahuate, alfalfa, frijol, alpiste, café, trigo, arroz, ajonjoli, cebada, caña de azúcar, piña, algodón, copra, limón, tamarindo, plátano, piña, naranja, mango, papaya, sandía, toronja, ciruela, manzana, tuna, durazno, aguacate y nuez.
- **Ganadería.** Se cría ganado bovino, caprino y porcino.
- **Turismo** nacional e internacional.

El clima predominante en estos Estados es cálido húmedo en las zonas bajas y templado con lluvias en verano en las sierras ubicadas al norte de los mismos. El clima y las extensas zonas con vegetación, le permiten contar con una amplia variedad de flora y fauna que prolifera en su territorio.

En este capítulo se presenta el análisis atmosférico de Oaxaca, en la que se identifican las principales cuencas atmosféricas, así como, el consumo de energía y los inventarios estatales de emisiones de contaminantes criterio y precursores y de gases de efecto invernadero.

I.1 Consumo de Energía (PJ)

Energéticamente, el estado de Oaxaca se caracteriza por su bajo consumo de combustibles fósiles para llevar a cabo las actividades económicas propias de la entidad. Desde hace 10 años el combustible con mayor potencial energético utilizado en la región ha sido el combustible, el cual ha tenido un crecimiento plano y cuyas variaciones van de un mínimo de 30 PJ en el 2001 a un máximo de 36 en el 2005, lo cual habla de la poca
evolución o desarrollo del sector que lo utiliza, y la falta de alternativas para sustituir a este hidrocarburo. Por su parte los petrolíferos que se encuentran directamente relacionados con el Sector Transporte han tenido un crecimiento considerable en los últimos años, las gasolinas aumentaron en un 75% de 1999 a 2009, mientras que el diesel lo hizo en un 18%. Otros combustibles como el Gas LP, Turbosina y Coque tienen una participación más discreta en la zona y no sobrepasan su potencial en más de 6 PJ (Figura 1).

Con el equivalente a 85 PJ Oaxaca representa alrededor del 1% del consumo de recursos fósiles para ser transformados en energía (Figura 2). Su sector de mayor crecimiento es el transporte, si se relaciona directamente el consumo de gasolina al proceso de combustión interna de los automóviles. Es una de las entidades con menor utilización de gas natural en todo México, y su bajo consumo contrasta con la presencia de una de las refinerías más importantes en el país en Salina Cruz. Además de este complejo, Oaxaca tan solo cuenta con una Terminal de Almacenamiento y Reparto ubicada en la capital del estado (Tabla 1).

Figura 2. Participación Porcentual en el Consumo de Energéticos Fósiles en México

![Diagrama de pastel mostrando el consumo de energéticos fósiles en México. Oaxaca representa 1% del consumó, mientras que el resto del país representa 99%.](attachment:diagram.png)

Fuente: CMM con información de SENER

| Tabla 1. Principal Infraestructura de Producción de Hidrocarburos. |
|-------------------|------------------|
| **Estado** | **Instalación** | **Proceso** |
| Oaxaca | Salina Cruz | Refinería |
| Oaxaca | Terminal de Almacenamiento y Reparto |

Fuente: CMM con información de PEMEX Refinación

La Refinería de Salina Cruz, localizada en el estado de Oaxaca, produce 21.6% del total del volumen de petrolíferos en el país, es el primer productor de combustóleo con 95.13 miles de barriles diarios, y el segundo en la producción de gas seco, gasolinas, turbosina y diesel. Los hidrocarburos procesados son distribuidos a lo largo de los estados en el Litoral del Pacífico de México.²

Tabla 2). Su importancia no radica tan solo en el volumen de hidrocarburos procesados, sino también en ser el único distribuidor de estos recursos a estados geográficamente distantes como los ubicados en el Golfo de California.
Plan de acción temprana ante el cambio climático para el estado de Oaxaca
Inventario de emisiones del estado de Oaxaca

Tabla 2. Refinerías en el Estado de Oaxaca

<table>
<thead>
<tr>
<th>Refinería, Estado</th>
<th>Producción 2009 (miles de barriles diarios)</th>
<th>Distribución</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas Seco</td>
<td>Gas Líquido</td>
</tr>
<tr>
<td>Salina Cruz, Oaxaca</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: CMM con información de PEMEX Refinación

La demanda de energía en el estado de Oaxaca se basa mayoritariamente en el uso de petrolíferos en los sectores que constituyen sus principales actividades económicas. Esta relación involucra la producción o importación de hidrocarburos y el envío a terminales de almacenamiento y distribución para su posterior comercialización a consumidores intermediarios y finales.

Cada combustible cuenta con uno o varios sectores de demanda principales; así las gasolinas y el diesel están dirigidas a su uso en motores de combustión interna para el Sector Transporte y en menor volumen para la generación de energía eléctrica; el combustible para el sector de generación de energía eléctrica; el coque de petróleo se consume en el sector industrial, los querosenos o turbosina en el aerotransporte; el gas LP se destina a los Sectores Residencial y de Servicios; el gas natural se consume principalmente en el Sector Petrolero (Tabla 3). Sin embargo, no toda la energía aprovechada está basada en la combustión de petrolíferos, sino también en recursos renovables, cuyo potencial en la zona es de los más altos en México y uno de los más importantes a nivel mundial.

Tabla 3. Consumo de Petrolíferos por Sector, 2009 [PJ]

<table>
<thead>
<tr>
<th>Sector</th>
<th>Gasolinas</th>
<th>Diesel</th>
<th>Combustible</th>
<th>Turbina</th>
<th>Gas Natural</th>
<th>Gas LP</th>
<th>Coque</th>
<th>Leña</th>
<th>Bagazo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eléctrico¹</td>
<td>-</td>
<td>0.4</td>
<td>16.8</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17.3</td>
</tr>
<tr>
<td>Industrial</td>
<td>-</td>
<td>0.6</td>
<td>1.0</td>
<td>-</td>
<td>0.0</td>
<td>0.3</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
</tr>
<tr>
<td>Petrolero²</td>
<td>0.1</td>
<td>3.4</td>
<td>15.1</td>
<td>-</td>
<td>1.7</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21.0</td>
</tr>
<tr>
<td>Residencial</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>27</td>
<td>2</td>
<td>-</td>
<td>33.4</td>
</tr>
<tr>
<td>Servicios</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>Transporte</td>
<td>26.5</td>
<td>9.8</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37.6</td>
</tr>
<tr>
<td>Total</td>
<td>26.6</td>
<td>14.1</td>
<td>33.2</td>
<td>0.9</td>
<td>1.7</td>
<td>6.6</td>
<td>1.9</td>
<td>27</td>
<td>2</td>
<td>114</td>
</tr>
</tbody>
</table>

¹ Incluye el combustible utilizado en Autoabastecimiento y Cogeneración.

² Incluye recirculación de gas natural, el cual es reinyectado a los pozos para mejorar la recuperación de petróleo.

Fuente: CMM con información de SENER
El sector de mayor consumo de hidrocarburos en Oaxaca es el Transporte, con 44% del total, cuyos combustibles principales son las gasolinas y el diesel. Entre otros consumos sobresale el del Sector Petrolero, que alcanza el 25%, seguido del Eléctrico con el 20% y el Residencial y de Servicios suman el 6% (Figura 3).

Como características adicionales para el Sector Residencial, en el estado de Oaxaca falta suministro de energía eléctrica en más de 55 mil viviendas, es decir, en el 6% de las viviendas (Tabla 4). Asimismo, también existe un alto porcentaje en el uso de leña como combustible para cocinar en éstas, el cual es del 49%, complementado por el uso de gas LP en el 50%; el 1% restante o bien usa otro combustible para cocinar o no está especificado.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Viviendas</th>
<th>% Viviendas con disponibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Leña</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>936,359</td>
<td>49%</td>
</tr>
</tbody>
</table>

El Diagrama 1 resume las entradas y salidas de energía en el estado de Oaxaca necesarias para satisfacer el consumo de usuarios regionales de 84 PJ en el 2008, de los cuales 68 provienen de la comercialización de petrolíferos de manera directa a la región y 8 de forma indirecta a través del sistema de generación y distribución de energía eléctrica. El consumo total señalado en el diagrama es de 114 PJ, de los cuales el equivalente a 34 PJ proviene de energías renovables y 85 de combustibles fósiles.
El Sector Eléctrico utiliza el potencial de energía de 19.2 PJ, de los cuales 17.2 fueron aportados por gas natural, combustóleo y diesel, y 2 PJ de biomasa. De este potencial, 14.4 PJ se estiman como pérdidas por conversión térmica y 4.8 se transformaron en energía eléctrica, cantidad a la que se le suma la generación neta de los procesos eólicos de 5 PJ.

Del total de electricidad generada en el estado, 1.4 representan pérdidas por transmisión y distribución, 8.4 corresponden a la energía utilizada por los usuarios estatales. Los consumos de gasolina, querosenos, gas LP y coque de petróleo se distribuyeron directamente al consumo regional en 26.6, 0.9, 6.6 y 1.9 PJ, respectivamente. En tanto que el diesel, combustóleo y gas natural fueron consumidos de manera directa por otros sectores distinto al eléctrico con equivalentes a 13.7, 16.4 y 1.7 PJ, respectivamente.

Diagrama 1. Consumo de Energía en Oaxaca, 2008 [PJ]
I.1.1 Sector Eléctrico

La generación de energía eléctrica en Oaxaca se caracteriza por estar constituida en su totalidad por tecnologías limpias en el servicio público (CFE y PIE), así también por tener uno de los potenciales altos para la generación por energía eólica en el país. Los combustibles fósiles para la generación de electricidad en la región son utilizados por empresas privadas y por PEMEX en procesos de cogeneración y autoabastecimiento.

El estado posee aproximadamente el 1.9% de la capacidad de generación de energía eléctrica instalada en el país, con 1,178 MW al 2009. De esta capacidad 456 MW pertenecen al sector público y representan 0.9% del total nacional. Mientras que los 722 MW restantes son de autoabastecimiento y cogeneración, 8% del total de la capacidad nacional del propio sector.

El sector público tiene aproximadamente el 38.7% de la capacidad de generación de energía eléctrica en la entidad, está conformado por centrales hidroeléctricas y eoloeléctricas: Temascal y La Venta3 (Tabla 5).

<table>
<thead>
<tr>
<th>Estado</th>
<th>Central</th>
<th>Tecnología</th>
<th>Capacidad (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oaxaca</td>
<td>Temascal</td>
<td>HID</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>La Venta</td>
<td>EOL</td>
<td>80</td>
</tr>
</tbody>
</table>

HID: Hidroeléctrica, EOL: Eoloeléctrica.

Fuente: CMM con información de CFE

Por su parte el Autoabastecimiento y Cogeneración representan el 61.3% de la capacidad de generación de energía eléctrica instalada en Oaxaca. PEMEX cogenera electricidad para sus propios procesos, mediante una capacidad instalada de 115.2 MW con tecnología de termoeléctrica convencional. Otras empresas se autoabastecen mediante centrales eoloeléctricas y motores de combustión interna base diesel, quema de biomasa y termoeléctricas convencionales (3)

Tabla 6).
En conjunto la tecnología de generación eoloeléctrica es la más importante con un 53% de la capacidad instalada, seguido por la hidroeléctrica con un 32%. Por su parte las tecnologías que queman combustibles fósiles tienen el 13% de la capacidad en la región, y aquellas que queman biomasa tan solo el 2% (Figura 4). Estas últimas son recurrentes en ingenios azucareros de la zona, donde la quema del bagazo de caña es aprovechada como fuente de energía.

Figura 4. Porcentaje de Capacidad de Generación de Energía por Tecnología en Oaxaca, 2009

La generación neta de energía eléctrica en la entidad en el 2009 fue de 3,147 GWh, los cuales representan el 1.2% del total nacional. Los porcentajes de participación por tecnología varían poco con respecto a las cantidades de capacidad de generación.
instalada, pero evidencian el bajo factor de planta de las energías renovables contra las convencionales. Tal es el caso de la Termoeléctrica Convencional, que pasa de 12% de capacidad instalada de generación a 22% de generación neta de electricidad en un año en esta región, mientras la energía eólica pasa de 53 a 46% y la hidroeléctrica de 32 a 28% (Figura 5). Típicamente los factores de planta para cada energía renovable se encuentran alrededor de 20 y 30%, mientras una central termoeléctrica puede alcanzar hasta 80.

Figura 5. Porcentaje de Generación de Energía Eléctrica por Tecnología en Oaxaca, 2009

El estado de Oaxaca consume solamente el 1.3% del total de energía eléctrica en el país, y los usuarios representan en 3.3% del país. De estos, el sector doméstico es el mayor consumidor, con el 42.1% de la región, seguido por la Industria con un 36.2% y el sector comercial con 12.9%. Sin embargo en cuanto al consumo de MWh por usuario, el sector industrial se encuentra al frente con 322.5 MWh por usuario; el promedio regional de consumo es de 2.1 MWh/usuario debajo de la media nacional de 5.43.

Tabla 7. Indicadores de Consumo de Energía Eléctrica en Oaxaca, 2008³

<table>
<thead>
<tr>
<th>Sector</th>
<th>Miles de Usuarios</th>
<th>Ventas (GWh)</th>
<th>Ventas por Usuario (MWh/usuario)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doméstico</td>
<td>970.2</td>
<td>970.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Comercial</td>
<td>116.3</td>
<td>297.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Servicios</td>
<td>4.1</td>
<td>173.1</td>
<td>41.9</td>
</tr>
<tr>
<td>Agrícola</td>
<td>8.8</td>
<td>27.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Industria</td>
<td>2.6</td>
<td>834.7</td>
<td>322.5</td>
</tr>
<tr>
<td>Total</td>
<td>1,102.1</td>
<td>2,303.9</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Fuente: CMM con información de CFE
En los últimos diez años en el estado de Oaxaca los sectores de mayor crecimiento en cuanto a su consumo han sido el Comercial y el Doméstico, con una tasa media de crecimiento anual (TMCA) de alrededor del 5%. Sin embargo, en cuanto a magnitudes se refiere, sobresale el comportamiento de los sectores industrial y doméstico (Figura 6); el primero de estos con una pendiente de crecimiento más plana ³.

Figura 6. Evolución de ventas de electricidad (MWh) por tipo de usuario en Oaxaca, 1999-2009

Fuente: CMM con información de CFE

I.1.2 Potencial de Generación de Energías Renovables

Oaxaca posee recursos naturales y características geográficas idóneas para el desarrollo de proyectos de energías renovables. En el territorio estatal se encuentran disponibles fuentes de energía renovable que ofrecen alternativas de aprovechamiento sustentable en proyectos bioenergéticos, hídricos, geotérmicos, solares y eólicos, para la generación eléctrica o de otras aplicaciones, contribuyendo a los objetivos nacionales de combate al cambio climático, lo que convierte a las energías limpias en un sector de la economía estatal y regional con potencial suficiente para convertirse en uno de los ejes del desarrollo estratégico del estado y del país, con la capacidad de poder aportar generación de electricidad que evite los niveles de emisiones contaminantes asociados al consumo de combustibles fósiles.

Con el objetivo de brindar certeza jurídica a los actores involucrados en el desarrollo de proyectos de aprovechamiento sustentable de energías alternativas, el Gobierno del Estado ha publicado en el Periódico Oficial, con fecha 3 de abril de 2010, y aprobado por la LX Legislatura Constitucional del Estado, el Decreto Núm. 1751, la Ley de Coordinación para el Fomento del Aprovechamiento Sustentable de las Fuentes de Energía Renovable en el Estado de Oaxaca, el cual será el instrumento legal que permita coordinar e implementar las acciones necesarias para dar cumplimiento a las disposiciones de carácter federal en la materia, para el fomento del desarrollo y aprovechamiento racional...
de las fuentes renovables de energía en el estado, las cuales residen en fenómenos, procesos o materiales susceptibles de transformarse en energía aprovechable.

Con base en lo antes expuesto, el Gobierno del Estado promueve la inversión para el desarrollo de proyectos de energías renovables, en los rubros:

- **Energía Eólica**

El Estado de Oaxaca cuenta con un área geográfica denominada “Corredor Eólico del Istmo de Tehuantepec”, que, por sus características climatológicas y orográficas, ofrece un potencial de viento considerado entre los mejores a nivel mundial, lo que representa una excelente oportunidad de negocios para la generación eoloeléctrica, así como para la oferta de productos y servicios relacionados a la industria eólica instalada, cuya única limitante es la falta de una amplia red de distribución.

Actualmente se cuenta con 6 parques eólicos en operación, los cuales generan 509 MW, con una inversión total de 1,090.3 MDD, mientras que 8 más están en fase de desarrollo, con una capacidad de generación de 815.5 MW y una inversión total de más de 1,318 MDD.

En la Figura 7 podemos observar la ubicación de los proyectos de parques eólicos que se tienen en operación o en construcción para la zona del Istmo de Tehuantepec en Oaxaca.

La existencia de varios proyectos en Oaxaca (Tabla 8), se debe a que la zona está influenciada por tres corrientes predominantes de aire que ofrecen buenos vientos a lo largo del año. El recurso más alto de viento ocurre en las costas y cerca de las faldas de las montañas, en lugares como La Mata, La Ventosa y La Venta³.

Figura 7. Ubicación de Proyectos Eólicos en el Istmo de Tehuantepec, Oaxaca

![Ubicación de Proyectos Eólicos en el Istmo de Tehuantepec, Oaxaca](image-url)
Tabla 8. Capacidad Instalada de Proyectos Eólicos en el Istmo de Tehuantepec, Oaxaca

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Capacidad (MW)</th>
<th>Servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oaxaca I</td>
<td>101.4</td>
<td>PIE*</td>
</tr>
<tr>
<td>La Venta</td>
<td>1.35</td>
<td>Público</td>
</tr>
<tr>
<td>La Venta II</td>
<td>83</td>
<td>Público</td>
</tr>
<tr>
<td>La Venta III</td>
<td>101.4</td>
<td>PIE</td>
</tr>
<tr>
<td>Parques Ecológicos de México</td>
<td>80</td>
<td>Auto abasto</td>
</tr>
<tr>
<td>Eléctrica del Valle de México</td>
<td>67.5</td>
<td>Auto abasto</td>
</tr>
<tr>
<td>Eurus</td>
<td>250</td>
<td>Auto abasto</td>
</tr>
<tr>
<td>BI1 NEE STIPA</td>
<td>200</td>
<td>Auto abasto</td>
</tr>
<tr>
<td>Fuerza Eólica del Istmo</td>
<td>30</td>
<td>Auto abasto</td>
</tr>
<tr>
<td>Eoliatec del Istmo 2010 (1)</td>
<td>22</td>
<td>Auto abasto</td>
</tr>
<tr>
<td>Centro Regional de Tecnología Eólica</td>
<td>5</td>
<td>Pequeño Productor</td>
</tr>
</tbody>
</table>

*PIE: Productores Independientes de Energía

- **Hidroelectricidad**

La orografía y recursos hídricos del Estado de Oaxaca ofrecen un gran potencial para el aprovechamiento sustentable de caídas de agua para la generación de energía eléctrica; a la fecha se cuenta con 75 potenciales proyectos identificados por la Comisión Federal de Electricidad para la instalación de minihidroeléctricas.

- **Geotermoelectricidad**

En el Estado de Oaxaca la Comisión Federal de Electricidad ha identificado algunos posibles sitios para iniciar el aprovechamiento de este tipo de recurso, sobre todo en municipios de las regiones Valles Centrales, Istmo y Sierra Sur.

- **Energía Solar**

Oaxaca posee un excelente potencial para el aprovechamiento de la energía solar en todo su territorio. El Mapa Nacional de Potencial Solar de la Secretaría de Energía ha permitido al Gobierno del Estado la identificación de 105 municipios en el estado con características de Radiación Solar Global Anual que hacen viable el aprovechamiento de este recurso energético a través de sistemas fotovoltaicos o térmico-solares.

- **Bioenergéticos**

Oaxaca posee una diversidad de tipos de suelo y climas con potencial para el desarrollo de proyectos de aprovechamiento de biomasa orientados a la generación de bioenergéticos, tales como el bioetanol, biodiesel, biogás o bioturbosina, mediante el cultivo y procesamiento de caña de azúcar, higuera, jatropha, palma de aceite, remolacha azucarera, sorgo dulce, girasol, cártamo, jatropha curcas y palma de aceite, o bien, a través del aprovechamiento de los desperdicios orgánicos que se originan en las ciudades y en el campo.
I.1.3 Sector Transporte

El Sector Transporte del estado de Oaxaca está conformado por los Subsectores Autotransporte, Aéreo, Ferroviario y Marítimo.

De acuerdo con la Secretaría de Economía del estado de Oaxaca, su red carretera tiene una extensión de 20,057 kilómetros, lo que representa el 6% de la red carretera del país, ocupando con ello el quinto lugar a nivel nacional después de Jalisco, Sonora, Veracruz y Chiapas. Asimismo, posee 5 de los 85 aeropuertos y 4 de los 90 puertos marítimos en el país.

Este sector consumió en 2008 un total de 1.3 millones de metros cúbicos de combustibles, equivalentes a 85 PJ; de los cuales la gasolina fue la de mayor participación. Cabe señalar que en el caso del diesel, éste incluye el consumo realizado por los subsectores Autotransporte, Ferroviario y Marítimo.

Figura 8. Participación de los subsectores de Transporte en Oaxaca por consumo de energía, 2008

I.1.3.1 Subsector Autotransporte

De los diferentes subsectores, el Autotransporte muestra el mayor crecimiento de los últimos 10 años, dado un incremento del 62% en el consumo de gasolinas, principalmente, ya que pasó de 545 mil a 885 mil metros cúbicos al año durante el periodo 1999 – 2008, a una tasa de crecimiento media anual de cerca del 6%. Esto implica un incremento el índice de motorización, el cual para 2008 fue de 41 vehículos por cada mil habitantes.

En el 2008, el parque vehicular para Oaxaca se estima alcanzó las 309 mil unidades, de las cuales cerca del 70% tienen más de 11 años de antigüedad, por lo que su operación es cada vez más ineficiente.
En cuanto a la participación por tipo de vehículo, el 47% fueron vehículos de uso particular, incluidas las denominadas SUVs\(^4\), por sus siglas en inglés y 41% vehículos ligeros de carga. Las motocicletas constituyen el 5% del parque, en tanto que los taxis y los vehículos pesados de carga, 3% cada uno. En cuanto a los autobuses de pasajeros su participación fue de tan solo el 0.3% (Tabla 9).

Tabla 9. Parque vehicular en Oaxaca, 2008

<table>
<thead>
<tr>
<th>Tipo de vehículo</th>
<th>Total de unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motocicletas</td>
<td>14,160</td>
</tr>
<tr>
<td>Taxis</td>
<td>10,465</td>
</tr>
<tr>
<td>Vehículos particulares (incluyendo SUV’s)</td>
<td>145,715</td>
</tr>
<tr>
<td>Vehículos ligeros de carga (< 3 toneladas)</td>
<td>127,279</td>
</tr>
<tr>
<td>Transporte público de pasajeros</td>
<td>1,315</td>
</tr>
<tr>
<td>Vehículos pesados de carga (> 3 toneladas)</td>
<td>8,863</td>
</tr>
<tr>
<td>Autobuses de pasajeros</td>
<td>1,050</td>
</tr>
<tr>
<td>Total</td>
<td>308,847</td>
</tr>
</tbody>
</table>

Fuente: Centro Mario Molina

Este parque vehicular, que contribuye con el 31% de las emisiones totales de gases de efecto invernadero del estado, debe ser sometido a una prueba de emisión de contaminantes, de acuerdo con lo establecido en el Programa Obligatorio de Verificación de Vehículos para Oaxaca. Este programa obliga a todos los vehículos automotores registrados y que circulen en el estado, mismos que incluyen los destinados al transporte de uso particular e intensivo (público y privado), así como las motocicletas de uso intensivo (público y privado), las cuales en los últimos años, han crecido como medio de trasporte, representando una importante fuente de emisiones a la atmósfera, ante la falta de un transporte público limpio y eficiente, principalmente en las zonas urbanas como la Zona Metropolitana de Oaxaca, aunado al casi nulo cumplimiento de verificar las unidades dos veces al año, así como a la falta de un mecanismo de control que sancione su incumplimiento.

En la ciudad de Oaxaca de Juárez por ejemplo, el transporte público se caracteriza por la problemática en la falta de mantenimiento de sus vehículos, la falta de rutas, inseguridad, tarifas altas e insuficiencia de terminales para satisfacer las necesidades de los más de 540 mil habitantes de su zona metropolitana. El parque vehicular destinado a transporte público consta de 900 autobuses urbanos, 300 suburbanos, 10 mil taxis foráneos y 2 mil monotaxis, cuyo número va en aumento debido a la falta de regulación que la autoridad tiene sobre éstos. En la ciudad se realizan más de 957 mil viajes diarios de manera que el índice de movilidad es de 1.76 viajes por persona, valor por debajo de los índices en otras

\(^4\) SUVs: *Sport Utility Vehicles*
ciudades mexicanas y que es un indicador del rezago económico. Más del 50% de estos viajes se realizan en transporte público, cuya edad promedio es de 11 años (CTS, 2010).

I.1.3.2 Subsector Aéreo

En Oaxaca se localizan 5 aeropuertos, 3 de los cuales reciben tanto vuelos nacionales como internacionales. Los dos restantes pertenecen a la Fuerza Aérea Mexicana y a la Marina Armada de México (Tabla 10).

Los aeropuertos dedicados a la aviación civil transportaron en 2008 un total de un millón 24 mil 830 pasajeros, que representan cerca del 2% del total de pasajeros transportados por esta vía en el país, que representaron un total de 8 mil 343 operaciones, de las cuales el 97% fueron nacionales y 3% internacionales.

<table>
<thead>
<tr>
<th>Nombre del aeropuerto</th>
<th>Ciudad</th>
<th>Dirección de aeropuerto</th>
<th>Tipo de aeropuerto</th>
<th>Pasajeros transportados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeropuerto Internacional De Huatulco</td>
<td>Huatulco</td>
<td>Pinotepas Salinas Cruz Km 237 Col. Zapote Santa Maria Huatulco C.P. 70980</td>
<td>Internacional</td>
<td>365,952</td>
</tr>
<tr>
<td>Aeropuerto Internacional de Xoxocotlan</td>
<td>Oaxaca</td>
<td>Carretera Oaxaca Puerto Angel Km 7.5 C.P. 71238</td>
<td>Internacional</td>
<td>594,468</td>
</tr>
<tr>
<td>Aeropuerto Puerto Escondido</td>
<td>Puerto Escondido</td>
<td>Carretera Acapulco Km 6.5 Col. Centro C.P. 71980</td>
<td>Internacional</td>
<td>64,410</td>
</tr>
<tr>
<td>Aeropuerto de Salinas Cruz</td>
<td>Salinas Cruz</td>
<td>Carretera Benito Juárez, Salina Cruz, Oaxaca, Mexico</td>
<td>Base No. 2 de la Fuerza Aérea Mexicana</td>
<td>N.A.</td>
</tr>
<tr>
<td>Aeropuerto Ixtepec</td>
<td>Oaxaca</td>
<td>Ixtepec, Oaxaca</td>
<td>Base Aérea Naval No. 2</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

N.A. No aplica

Fuente: Centro Mario Molina

I.1.3.3 Subsector Ferroviario

En el caso del Subsector Ferroviario, el servicio actualmente es ofrecido por la empresa FERROSUR, S.A. de C.V., la cual bajo la concesión por parte de la Secretaría de Comunicaciones y Transportes, opera un total de 2,093 Km de vías férreas, de los cuales 1,565 Km son vías principales, 217 son del Ferrocarril de Oaxaca, 104 Km del Ferrocarril del Sur y 207 Km corresponden a Derecho de paso en el Ferrocarril Transístmico (Figura 9).
En el 2008, se estima que este subsector transportó una carga total de 956 millones 877mil 768 toneladas-kilómoto, con un rendimiento del combustible de 114 toneladas-km por litro de diesel.

Figura 9. Vías férreas operadas por FERROSUR

I.1.3.4 Subsector Marítimo

El estado de Oaxaca cuenta con puertos marítimos y turísticos, siendo el más importante el de Salina Cruz, el cual es puerto de cabotaje y de altura. En su primera modalidad existen salidas con una carga total superior a las 10 millones de toneladas en un año principalmente de petróleo y derivados, cuyos destinos principales son Lázaro Cárdenas, Michoacán y Manzanillo, Colima.
Tabla 11). Como puerto de altura Salina Cruz tiene exportaciones de más de 2 millones de toneladas al año con destinos principales como Aruba y los Estados Unidos (Fuente: CMM con del Puerto de Salina Cruz

Tabla 12); a su vez recibe importaciones de cerca de 22 mil toneladas (Fuente: CMM con del Puerto de Salina Cruz
Tabla 13) (SCT, 2011).

Para el desarrollo de las actividades de los 4 puertos del estado, los cuales se encuentran ubicados en Bahías de Huatulco, Puerto Ángel, Puerto Escondido y en Salina Cruz, el Subsector Marítimo consumió un total de mil 471 toneladas de diesel marítimo en 2008.
Tabla 11. Operación en el Puerto Marítimo Salina Cruz, Oaxaca (Cabotaje)

<table>
<thead>
<tr>
<th>Salidas</th>
<th>Carga</th>
<th>Toneladas</th>
<th>Arribos</th>
<th>Barcos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acapulco, Gro.</td>
<td>Petróleo y derivados</td>
<td>149,112</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Guaymas, Son.</td>
<td>Petróleo y derivados</td>
<td>270,454</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>La Paz, B.C.S.</td>
<td>Fluidos, petróleo y derivados</td>
<td>640,222</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Lázaro Cárdenas, Mich.</td>
<td>Fluidos, petróleo y derivados</td>
<td>4,242,237</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>Manzanillo, Col.</td>
<td>Petróleo y derivados</td>
<td>3,366,754</td>
<td>100</td>
<td>17</td>
</tr>
<tr>
<td>Mazatlán, Sin.</td>
<td>Petróleo y derivados</td>
<td>92,030</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Puerto Libertad, Son.</td>
<td>Petróleo y derivados</td>
<td>312,995</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Topolobambo, Sin.</td>
<td>Fluidos y petróleo y derivados</td>
<td>935,914</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10,009,718</td>
<td>30</td>
<td>6</td>
</tr>
</tbody>
</table>

Fuente: CMM con del Puerto de Salina Cruz

Tabla 12. Operación de exportación en el Puerto Marítimo Salina Cruz, Oaxaca (Altura)

<table>
<thead>
<tr>
<th>Exportaciones</th>
<th>Carga</th>
<th>Toneladas</th>
<th>Arribos</th>
<th>BARCOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aruba</td>
<td>Petróleo y derivados</td>
<td>713,168</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Australia</td>
<td>Contenerizada</td>
<td>18,798</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Canadá</td>
<td>Petróleo y derivados</td>
<td>30,586</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chile</td>
<td>Contenerizada</td>
<td>39,090</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>China</td>
<td>Contenerizada</td>
<td>14,517</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Colombia</td>
<td>Contenerizada</td>
<td>675</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Corea Del Sur</td>
<td>Contenerizada</td>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Estados Unidos</td>
<td>Contenerizada, fluidos, petróleo</td>
<td>1,058,746</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Fluidos, G. Mineral</td>
<td>21,510</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Contenerizada</td>
<td>175</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Japón</td>
<td>Contenerizada</td>
<td>51</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nueva Zelanda</td>
<td>Contenerizada</td>
<td>3,354</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Panamá</td>
<td>Petróleo y derivados</td>
<td>148,540</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Perú</td>
<td>Petróleo y derivados</td>
<td>25,448</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Singapur</td>
<td>Petróleo y derivados</td>
<td>53,623</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Contenerizada</td>
<td>229</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,128,532</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: CMM con del Puerto de Salina Cruz
Plan de acción temprana ante el cambio climático para el estado de Oaxaca
Inventario de emisiones del estado de Oaxaca

Tabla 13. Operación de importación en el Puerto Marítimo Salina Cruz, Oaxaca (Altura)

<table>
<thead>
<tr>
<th>Importaciones</th>
<th>Carga</th>
<th>Toneladas</th>
<th>Arribos</th>
<th>Barcos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>Contenerizada</td>
<td>602</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>China</td>
<td>Contenerizada</td>
<td>1,641</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Costa rica</td>
<td>Contenerizada</td>
<td>2,059</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Contenerizada</td>
<td>546</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lituania</td>
<td>Gas mineral</td>
<td>16,950</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21,799</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: CMM con información de SCT

El puerto turístico más importante en el Estado de Oaxaca es el de Bahías de Huatulco cuyos datos de arribos turísticos y pasajeros han aumentado en los últimos días años. En el 2008 registró más de 90 mil pasajeros, mientras que en el 2009 está cifra ascendió más de 30 mil (Tabla 14) (FONATUR, 2011).

Tabla 14. Operación del Puerto Turístico de Bahías de Huatulco, Oaxaca 2008

<table>
<thead>
<tr>
<th>Año</th>
<th>Arribos</th>
<th>Pasajeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>14</td>
<td>15,552</td>
</tr>
<tr>
<td>2002</td>
<td>29</td>
<td>36,868</td>
</tr>
<tr>
<td>2003</td>
<td>30</td>
<td>38,605</td>
</tr>
<tr>
<td>2004</td>
<td>46</td>
<td>67,770</td>
</tr>
<tr>
<td>2005</td>
<td>54</td>
<td>84,196</td>
</tr>
<tr>
<td>2006</td>
<td>53</td>
<td>78,371</td>
</tr>
<tr>
<td>2007</td>
<td>58</td>
<td>99,570</td>
</tr>
<tr>
<td>2008</td>
<td>62</td>
<td>90,561</td>
</tr>
<tr>
<td>2009</td>
<td>72</td>
<td>120,530</td>
</tr>
</tbody>
</table>

Fuente: CMM con información de SCT
I.2 Inventario Estatal de Contaminantes Criterio

El Inventario Estatal de Emisiones de Contaminantes Criterio de Oaxaca tiene como objetivo desarrollar una herramienta esencial para la gestión de la calidad del aire, identificando las principales fuentes de emisión a la atmósfera y el tipo de contaminantes que éstas generan; creando un instrumento fundamental para el establecimiento de políticas y estrategias de reducción y control de emisiones contaminantes del aire.

Los contaminantes estimados incluyen tanto los considerados como contaminantes criterio, como los precursores de ozono; los cuales son: partículas (PM), partículas fracción respirable menores a 10 y 2.5 micrómetros (PM$_{10}$ y PM$_{2.5}$), óxidos de nitrógeno (NOx), bióxido de azufre (SO$_2$), monóxido de carbono (CO), amoníaco (NH$_3$), compuestos orgánicos totales (COT) y compuestos orgánicos volátiles (COV). Estos contaminantes provienen de las siguientes fuentes de emisión:

- **Fuentes fijas:** Son los establecimientos industriales o comerciales que generan emisiones de contaminantes del aire a través de chimeneas o en forma fugitiva y cuya estimación de emisiones se efectúa en forma individual.

 Esta categoría se desarrolló a partir de la extrapolación de Inventario Nacional de Emisiones año base 2008 elaborado por SEMARNAT, el cual incluye la estimación de sectores de jurisdicción Federal y Estatal.

- **Fuentes de área:** Se incluyen establecimientos industriales y comerciales de diversos giros, cuyas emisiones se estiman en forma colectiva. Asimismo, se incluyen otras actividades comerciales, de servicios y domésticas con diversas subcategorías de fuentes de área, de las cuales algunas se relacionan con emisiones evaporativas de compuestos orgánicos, sistemas de combustión domésticos y comerciales y, con actividades intensivas de resuspensión de partículas.

- **Fuentes móviles:** Corresponden a las emisiones generadas por los vehículos automotores que circulan por las vialidades y carreteras dentro de las manchas urbanas y poblaciones más importantes del estado. La estimación de las emisiones se realizó a partir de la aplicación del modelo MOBILE 5, considerando las emisiones de vehículos de gasolina y diesel, tanto de uso privado como para transporte público de pasajeros y de carga.

- **Fuentes naturales:** Son aquellas que emiten contaminantes atmosféricos que no se generan directamente de actividades humanas. Entre éstas se incluyen las emisiones provenientes de la vegetación y los suelos, y su estimación se llevó a cabo a partir de la aplicación del modelo GloBEIS (Sistema Global de Emisiones e Interacciones de la Biosfera), que permite estimar las emisiones biogénicas de COV y las emisiones edáficas de NOx. Adicionalmente en esta categoría se incluyen las emisiones asociadas a los incendios forestales.

Durante el 2008, en el estado de Oaxaca se emitió un total de 1.7 millones de toneladas de contaminantes criterio y precursores, tal como se muestra en la Tabla 15, la cual detalla las emisiones generadas por tipo de fuente. La Fuente: Centro Mario Molina

Tabla 16 presenta su correspondiente participación porcentual.
Tabla 15 Emisiones de contaminantes criterio por tipo de fuente, Oaxaca 2008

<table>
<thead>
<tr>
<th>Fuente</th>
<th>PM</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>NOx</th>
<th>SO$_2$</th>
<th>CO</th>
<th>COT</th>
<th>COV</th>
<th>NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fijas</td>
<td>11,623</td>
<td>10,318</td>
<td>9,613</td>
<td>11,321</td>
<td>114,959</td>
<td>30,234</td>
<td>3,358</td>
<td>2,943</td>
<td>958</td>
</tr>
<tr>
<td>Área</td>
<td>20,398</td>
<td>10,054</td>
<td>2,601</td>
<td>677</td>
<td>8</td>
<td>3,142</td>
<td>31,027</td>
<td>31,023</td>
<td>49,729</td>
</tr>
<tr>
<td>Móviles</td>
<td>89</td>
<td>89</td>
<td>63</td>
<td>9,876</td>
<td>179</td>
<td>260,560</td>
<td>24,484</td>
<td>23,969</td>
<td>155</td>
</tr>
<tr>
<td>Naturales</td>
<td>1,775</td>
<td>1,504</td>
<td>1,479</td>
<td>63,762</td>
<td>0</td>
<td>16,669</td>
<td>1,072,140</td>
<td>1,072,140</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>33,885</td>
<td>21,965</td>
<td>13,755</td>
<td>85,636</td>
<td>115,145</td>
<td>310,605</td>
<td>1,131,009</td>
<td>1,130,074</td>
<td>50,843</td>
</tr>
</tbody>
</table>

Fuente: Centro Mario Molina

Tabla 16 Participación porcentual por tipo de fuente, Oaxaca 2008

<table>
<thead>
<tr>
<th>Fuente</th>
<th>PM</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>NOx</th>
<th>SO$_2$</th>
<th>CO</th>
<th>COT</th>
<th>COV</th>
<th>NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fijas</td>
<td>34.3</td>
<td>47.0</td>
<td>69.9</td>
<td>13.2</td>
<td>99.8</td>
<td>9.7</td>
<td>0.3</td>
<td>0.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Área</td>
<td>60.2</td>
<td>45.8</td>
<td>18.9</td>
<td>0.8</td>
<td>0.0</td>
<td>1.0</td>
<td>2.7</td>
<td>2.7</td>
<td>97.8</td>
</tr>
<tr>
<td>Móviles</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>11.5</td>
<td>0.2</td>
<td>83.9</td>
<td>2.2</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Naturales</td>
<td>5.2</td>
<td>6.8</td>
<td>10.7</td>
<td>74.5</td>
<td>0.0</td>
<td>5.4</td>
<td>94.8</td>
<td>94.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fuente: CMM

El
Figura 10 muestra la contribución porcentual por tipo de fuente de emisiones totales de contaminantes criterio y precursores, siendo las fuentes naturales las de mayor contribución con el 80%, seguida de las fuentes móviles con el 17%.
En cuanto a los contaminantes, destacan las emisiones de Compuestos Orgánicos Volátiles (COVs), las cuales representan el 67% de las emisiones totales del estado. El 95% de éstas provienen de fuentes naturales, particularmente biogénicas. El 5% restante corresponde a emisiones antropogénicas provenientes de fuentes de área y fuentes móviles.

El segundo contaminante en orden de importancia por su contribución es el monóxido de carbono (CO), el cual contribuye con casi el 18% de las emisiones totales de contaminantes criterio de Oaxaca. El 86% de este contaminante proviene del Sector Transporte, cuya flota es de cerca de 309 mil unidades, de la cual el 97% son vehículos a gasolina y 3% a diesel. Existen también vehículos a gas licuado de petróleo, aunque su participación porcentual en la flota total es poco significativa.

Respecto al dióxido de azufre (SO\(_2\)), éste representa el 7%; donde prácticamente el total emitido proviene de las fuentes fijas, siendo la Refinería Ing. Antonio Dovalí Jaime, ubicada en el municipio de Salina Cruz y los ingenios azucareros –que queman combustible, los principales contribuyentes.

Las partículas (PM), por otro lado, contribuyen con el 2% de las emisiones totales. Estas emisiones provienen en un 62% de fuentes de área, básicamente generadas por actividades de labranza y construcción. El segundo mayor emisor de este contaminante son las fuentes fijas, entre las que destacan nuevamente los ingenios y la Refinería de Salina Cruz, contribuyendo con el 32%. Es importante destacar que, el 64% de estas partículas son partículas de fracción respirable PM\(_{10}\), de las cuales, el 61% son PM\(_{2.5}\).

En lo referente a óxidos de nitrógeno (NOx), en el estado se emiten alrededor de 84 mil toneladas al año, lo que representa el 5% de las emisiones estatales. El 76% de este contaminante es de origen natural, en tanto que el 24% restante proviene de actividades antropogénicas, principalmente industrial y del transporte.

El amoníaco (NH\(_3\)) es considerado un precursor de partículas secundarias que repercuten principalmente de manera regional en la visibilidad de los paisajes. Este contaminante es
originado mayoritariamente por actividades ganaderas, aportando el 3% del total de contaminantes criterio en Oaxaca.

La Figura 11 muestra los resultados obtenidos para el estado de Oaxaca en lo que se refiere a contaminantes criterio.

Figura 11. Distribución porcentual de contaminantes criterio en el estado de Oaxaca por tipo de fuente, 2008

![Diagrama de barras mostrando la distribución porcentual de contaminantes criterio en Oaxaca por tipo de fuente en 2008.](image-url)
I.3 Inventario Estatal de Gases de Efecto Invernadero de Oaxaca (GEI)

El Inventario Estatal de Emisiones de Gases de Efecto Invernadero de Oaxaca se elaboró con base en la estimación de emisiones generadas en cada una de las categorías recomendadas por el Panel Intergubernamental de Cambio Climático, considerando el 2008 como año-base. Estas categorías son:

a. **Energía**.- Se calculan las emisiones de GEI provenientes de las principales fuentes de combustión definidas por el IPCC, en las que se incluyen la generación de electricidad, el transporte y la industria manufacturera.

b. **Procesos Industriales**.- Se estiman las emisiones generadas por la industria, de acuerdo a las materias primas y compuestos específicos que son utilizados o transformados física o químicamente para la producción de bienes.

c. **Agricultura, ganadería y cambio de uso de suelo**.- Con respecto a la agricultura, las estimaciones realizadas corresponden a las emisiones de metano, monóxido de carbono (CO) y óxido nitroso (N₂O) procedentes de los residuos de las cosechas.

 En cuanto a la ganadería, se estiman las emisiones de metano y óxido nitroso provenientes de la fermentación entérica, es decir, del proceso digestivo de los animales herbívoros y, del manejo de estiércol, por su descomposición en condiciones anaeróbicas, que se presentan generalmente cuando se cria un número elevado de animales en un área confinada.

 Finalmente, con relación a los suelos agrícolas se estiman las emisiones directas de óxido nitroso provenientes de la producción animal y del sector agrícola en forma de urea y amoniaco, generadas por el uso de fertilizantes.

d. **Residuos**: Son emisiones estimadas provenientes del manejo y disposición de los residuos sólidos urbanos. En el caso de los primeros, se producen cantidades significativas de metano (CH₄) y óxido nitroso (N₂O) durante su proceso de descomposición.

Los potenciales de calentamiento global utilizados para determinar el total de bióxido de carbono equivalente emitido por el estado se muestran en la Tabla 17.

Tabla 17. Potencial de Calentamiento Global considerados por el Protocolo de Kioto

<table>
<thead>
<tr>
<th>Bióxido de carbono</th>
<th>Metano</th>
<th>Óxido nitroso</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>296</td>
</tr>
</tbody>
</table>

Fuente: Panel Intergubernamental de Cambio Climático (IPCC), 2001

De acuerdo con el Inventario Estatal de Gases de Efecto Invernadero de Oaxaca (Tabla 18), el estado contribuyó con 22 millones de toneladas de CO₂eq durante el 2008, lo que corresponde aproximadamente al 3% de las emisiones reportadas en el Inventario Nacional 2006, desarrollado por el Instituto Nacional de Ecología. De manera particular, cada habitante de este estado genera 2.7 tCO₂eq al año, cifra que representa la mitad del promedio nacional que se sitúa en 6.7 tCO₂eq per cápita al año.
Plan de acción temprana ante el cambio climático para el estado de Oaxaca
Inventario de emisiones del estado de Oaxaca

Tabla 18. Inventario Estatal de Gases de Efecto Invernadero de Oaxaca, 2008

<table>
<thead>
<tr>
<th>Categoría</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía</td>
<td>11,174,563</td>
<td>3,472</td>
<td>556</td>
<td>11,418,925</td>
</tr>
<tr>
<td>Procesos industriales</td>
<td>808,421</td>
<td>-</td>
<td>-</td>
<td>808,421</td>
</tr>
<tr>
<td>Agricultura y ganadería</td>
<td>0</td>
<td>171,185</td>
<td>3</td>
<td>3,938,170</td>
</tr>
<tr>
<td>Uso de suelo y vegetación</td>
<td>5,123,711</td>
<td>677</td>
<td>35</td>
<td>5,149,588</td>
</tr>
<tr>
<td>Residuos</td>
<td>0</td>
<td>25,655</td>
<td>0</td>
<td>590,065</td>
</tr>
<tr>
<td>Total</td>
<td>17,106,695</td>
<td>200,989</td>
<td>594</td>
<td>21,905,168</td>
</tr>
</tbody>
</table>

Fuente: Centro Mario Molina

La Figura 12 muestra la contribución porcentual de emisiones totales de gases de efecto invernadero por categoría, donde la de Energía es la de mayor participación, por lo que resulta prioritario impulsar el desarrollo y aplicación de energías renovables; así como mejorar la eficiencia energética tanto en el transporte como en la industria manufacturera, con el fin de mitigar dichas emisiones.

Figura 12. Contribución porcentual de GEI por categoría, Oaxaca 2008

La
Tabla 19 muestra las emisiones desagregadas por cada una de dichas categorías que integran el Inventario Estatal.
<table>
<thead>
<tr>
<th>Tabla 19 Emisiones desagregadas por tipo de categoría y sub-categoría de GEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones GEI (tCO₂eq/año)</td>
</tr>
<tr>
<td>ENERGÍA</td>
</tr>
<tr>
<td>Generación de energía eléctrica</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Industrias de manufactura</td>
</tr>
<tr>
<td>Industria del petróleo y petroquímica</td>
</tr>
<tr>
<td>Industria alimentos y bebidas</td>
</tr>
<tr>
<td>Industria azucarera</td>
</tr>
<tr>
<td>Industria cemento y cal</td>
</tr>
<tr>
<td>Industria celulosa y papel</td>
</tr>
<tr>
<td>Industria minerales</td>
</tr>
<tr>
<td>Industria madera</td>
</tr>
<tr>
<td>Hospitales</td>
</tr>
<tr>
<td>Productos de asfalto</td>
</tr>
<tr>
<td>Industria química</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Transporte</td>
</tr>
<tr>
<td>Autotransporte</td>
</tr>
<tr>
<td>Aéreo</td>
</tr>
<tr>
<td>Ferroviario</td>
</tr>
<tr>
<td>Marítimo</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Residencial y Comercial</td>
</tr>
<tr>
<td>Combustión comercial de GLP</td>
</tr>
<tr>
<td>Combustión comercial de GN</td>
</tr>
<tr>
<td>Combustión residencial de GLP</td>
</tr>
<tr>
<td>Combustión residencial de GN</td>
</tr>
<tr>
<td>Combustión residencial de leña</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Total ENERGÍA</td>
</tr>
<tr>
<td>PROCESOS INDUSTRIALES</td>
</tr>
<tr>
<td>Industria cemento y cal</td>
</tr>
<tr>
<td>Total PROCESOS INDUSTRIALES</td>
</tr>
<tr>
<td>AGRICULTURA Y GANADERÍA</td>
</tr>
<tr>
<td>Fermentación entérica</td>
</tr>
<tr>
<td>Manejo de estiércol</td>
</tr>
<tr>
<td>Quemas agrícolas</td>
</tr>
<tr>
<td>Total AGRICULTURA Y GANADERÍA</td>
</tr>
<tr>
<td>USO DE SUELO Y VEGETACIÓN</td>
</tr>
<tr>
<td>Cambio de uso de suelo</td>
</tr>
<tr>
<td>Incendios forestales</td>
</tr>
<tr>
<td>Total USO DE SUELO Y VEGETACIÓN</td>
</tr>
<tr>
<td>RESIDUOS</td>
</tr>
<tr>
<td>Disposición de residuos sólidos</td>
</tr>
<tr>
<td>Total RESIDUOS</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
Plan de acción temprana ante el cambio climático para el estado de Oaxaca

Inventario de emisiones del estado de Oaxaca

- **Energía**

La categoría de Energía es la principal emisora de gases de efecto invernadero. Aporta el 52% del total del dióxido de carbono equivalente generado en el estado de Oaxaca. De esta categoría destacan las emisiones del Sector Manufacturero con el 44%, seguido por el Sector Transporte con el 20% y el Residencial y Comercial con el 31%, cuyas emisiones provienen en un 87% por la quema de leña para cocción de alimentos. La generación de energía eléctrica contribuye únicamente con el 4.4%.

En el Sector Transporte destacan las emisiones provenientes del Autotransporte, el cual contribuye con el 93%. El subsector ferroviario se encuentra en segundo lugar con solamente el 5%; en tanto que los subsectores aéreos y marítimos contribuyen cada uno con un 1%.

De manera particular, en lo que respecta a la Industria Manufacturera, las actividades del Sector Petróleo y Petroquímica contribuyen con el 64% de los 5.1 millones de toneladas de CO$_2$eq. En segundo lugar se encuentra la producción de alimentos y bebidas con el 16%, seguida de la industria azucarera con el 9% y la industria del cemento y cal con el 8%.

- **Uso de Suelo y Vegetación**

En segundo lugar, con una aportación del 24% se encuentra la categoría de Uso de Suelo y Vegetación, cuyas emisiones provienen del carbono no fijado por la pérdida de biomasa forestal.

El Estado de Oaxaca se conforma aproximadamente de una superficie de 9.3 millones de hectáreas, mismo que comprende en un 36% de bosques y un 28% de selvas. Su vegetación es muy diversa debido a que cuenta con diferentes climas que van desde los cálidos, templados hasta los semisecos, por lo que existe una gran variedad biológica. En la Figura 13 se presenta el porcentaje de cada tipo de uso de suelo del Estado.

Figura 13. Uso de Suelo del Estado de Oaxaca, 2008
Asimismo, en la Tabla 20 se encuentra de manera desglosada, los tipos de uso de suelo y vegetación encontrados en el Estado de Oaxaca, mismos que fueron agrupados para facilidad del manejo de datos.

Tabla 20. Uso de suelo en Oaxaca

<table>
<thead>
<tr>
<th>Tipo de Uso de Suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosque de coníferas</td>
</tr>
<tr>
<td>Bosque de latifoliadas</td>
</tr>
<tr>
<td>Bosque de coníferas y latifoliadas</td>
</tr>
<tr>
<td>Bosque mesófilo de montaña</td>
</tr>
<tr>
<td>Selva caducifolia y subcaducifolia</td>
</tr>
<tr>
<td>Selva perennifolia y subperennifolia</td>
</tr>
<tr>
<td>Mezquital</td>
</tr>
<tr>
<td>Matorral Xerófilo</td>
</tr>
<tr>
<td>Pastizal natural, inducido y cultivado</td>
</tr>
<tr>
<td>Vegetación hidrófila</td>
</tr>
<tr>
<td>Vegetación halófila y gipsófila</td>
</tr>
<tr>
<td>Agricultura de temporal y de riego</td>
</tr>
<tr>
<td>Sin vegetación aparente</td>
</tr>
<tr>
<td>Cuerpos de Agua</td>
</tr>
<tr>
<td>Asentamientos humanos</td>
</tr>
</tbody>
</table>

Fuente: CMM con información de CONAFOR

Se estima que a lo largo de 32 años (1976-2008) se han perdido aproximadamente 500 mil Ha de selvas y 144 mil Ha de bosques, mismas que se han decidido principalmente a pastizales y a agricultura abarcando actualmente en conjunto un 32% del uso de suelo del Estado. La agricultura mayormente beneficiada ha sido la del mezcal, maguey y café; anudando a esto, el pastoreo excesivo encontrado en la zona contribuye enormemente a la degradación y pérdida de la cobertura forestal. En este sentido, las áreas sin vegetación aparente han ido en aumento afectando el paisaje (}
Figura 14).

Las emisiones procedentes del cambio en los usos de suelo y la pérdida de vegetación ascienden a un aproximado de 5.1 millones de toneladas de CO$_2$ equivalente. El balance de los flujos de carbono se presenta la Tabla 21, haciendo énfasis en la ganancia (captura) y pérdida de carbono (emisión) en la biomasa; así mismo, en la Figura 15 se presenta el balance de forma gráfica de carbono.
Figura 14. Comparación del Uso de Suelo 1976-2008 (miles de Ha)

<table>
<thead>
<tr>
<th>Uso de Suelo</th>
<th>1976</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosque</td>
<td>3,524</td>
<td>3,181</td>
</tr>
<tr>
<td>Selva</td>
<td>3,381</td>
<td>2,648</td>
</tr>
<tr>
<td>Agricultura</td>
<td>1,507</td>
<td>1,259</td>
</tr>
<tr>
<td>Pastizal</td>
<td>1,488</td>
<td>1,090</td>
</tr>
<tr>
<td>Cuerpo de agua</td>
<td>145</td>
<td>165</td>
</tr>
<tr>
<td>Otros tipos de vegetación</td>
<td>92</td>
<td>71</td>
</tr>
<tr>
<td>Matorral</td>
<td>57</td>
<td>39</td>
</tr>
<tr>
<td>Sin vegetación aparente</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>Zona urbana</td>
<td>6</td>
<td>42</td>
</tr>
</tbody>
</table>

Fuente: CMM con información de CONAFOR
Plan de acción temprana ante el cambio climático para el estado de Oaxaca
Inventario de emisiones del estado de Oaxaca

Tabla 21. Variación de Carbono en Oaxaca

<table>
<thead>
<tr>
<th>Oaxaca</th>
<th>Variación de Carbono</th>
<th>tC/año</th>
<th>Emisión neta t CO₂ eq/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incrementos de Carbono en</td>
<td>-18,553,397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>la biomasa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perdidas de Carbono debido</td>
<td>19,950,772</td>
<td></td>
<td>5,123,711</td>
</tr>
<tr>
<td>a la perdida de biomasa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance de Carbono</td>
<td>1,397,376</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Los signos negativos representan una captura de carbono
Fuente: Centro Mario Molina

Figura 15. Balance de Carbono en Oaxaca

Los resultados muestran que para el año 2008 el balance de la zona resulta ser una emisión neta de 1.4 millones de toneladas de carbono anuales, que se traducen a 5.1 millón de toneladas de CO₂ equivalente. La cifra hace notar el fuerte decremento de las coberturas forestales, a pesar de eso, existe una fuerte absorción de carbono, sin embargo, no es suficiente para contrarrestar la pérdida de biomasa. Ya desde hace unos años, la Comisión Nacional Forestal está llevando a cabo programas de reforestación donde se beneficiarán 21 predios (SEMARNAT, 2011), en estos, las plantaciones forestales ha ido incrementando para el año 2008 a 13 mil Ha. No obstante los esfuerzos que se han realizado hasta el momento, aún no se satisfacen las metas de captura de carbono, por lo que se tendrán que impulsar medidas alternativas.
En cuanto al tema de incendios forestales, el Estado de Oaxaca registró en el año 2008 un total de 274 incendios, afectando sólo a 14,677 Has, ocupando el sexto lugar en el país con mayor superficie afectada para el año en estudio, esto se debe a que la región es el 83% de clima cálido húmedo, con régimen tropical, lo que quiere decir que tiene veranos muy húmedos pero inviernos y primaveras muy secas (R. Pompa, 1995).

Tabla 22. Incendios forestales registrados en Oaxaca, 2008

<table>
<thead>
<tr>
<th>Superficie del Estado de Oaxaca (Ha)</th>
<th>Superficie incendiada (Ha)</th>
<th>Porcentaje de Afectación</th>
<th>Número de Incendios</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,379,300</td>
<td>14,677</td>
<td>0.2%</td>
<td>274</td>
</tr>
</tbody>
</table>

Fuente: Comisión Nacional Forestal

Las emisiones registradas por esta causa ascienden a una magnitud de 26 mil toneladas anuales de CO$_2$eq.

- **Agricultura y Ganadería**

El tercer lugar lo ocupan la categoría de Agricultura y Ganadería con el 18% del total de las emisiones que provienen principalmente de la fermentación entérica y del manejo de estiércol.

En el Estado de Oaxaca, la población es mayoritariamente rural, por lo que el ganado que alberga es destinado básicamente al autoconsumo. Un estudio indica que el 50% de las zonas perdidas se destinan a potreros y zonas agrícolas (Mario González, 2009). La Tabla 23 presenta la población ganadera en el estado.

Tabla 23. Población ganadera del estado de Oaxaca, 2008

<table>
<thead>
<tr>
<th>Tipo de Ganado</th>
<th>Cabezas de ganado en el año 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovino</td>
<td>844,908</td>
</tr>
<tr>
<td>Porcino</td>
<td>185,432</td>
</tr>
<tr>
<td>Ovino</td>
<td>352,323</td>
</tr>
<tr>
<td>Caprino</td>
<td>321,205</td>
</tr>
<tr>
<td>Aviar</td>
<td>4,323,779</td>
</tr>
<tr>
<td>Total</td>
<td>6,027,647</td>
</tr>
</tbody>
</table>

Fuente: SAGARPA

Las emisiones totales derivadas de esta sub categoría, asciendan a 1.1 millones de toneladas de CO$_2$eq anuales, de las cuales las que más cuantiosas son las provenientes de la fermentación entérica.
Procesos Industriales

En cuanto a la de Procesos Industriales, las emisiones de bióxido de carbono equivalente estimadas provienen de la operación de una planta cementera que se ubica en el estado y la cual contribuye con el 4% de los gases de efecto invernadero.

Residuos

La disposición de residuos sólidos municipales se estima en 803 mil toneladas de residuos al año, de las cuales solo 12 mil son dispuestas en sitios controlados y/o rellenos sanitarios, contribuye con el 3% del total de las emisiones del estado.

La Figura 16 muestra la contribución por cada uno de los gases de efecto invernadero estimados por categoría para el estado de Oaxaca considerando al 2008 como año base. En el caso de la categoría de Energía, ésta contribuye con el 65% de las emisiones de bióxido de carbono (CO₂) y el 94% de las de óxido nitroso (N₂O). En el caso de la categoría de Uso de Suelo y Vegetación, las emisiones de CO₂ son resultado de la deforestación o cambio en la aptitud, por lo que se considera importante desarrollar proyectos de reforestación e integración de corredores biológicos bajo un esquema REDD+. La Agricultura y Ganadería son los principales emisores de metano debido básicamente a la cría de ganado. En cuanto a los Residuos, éstos contribuyen con el 13% de las emisiones de metano, como resultado de su disposición a cielo abierto y la falta de proyectos que permitan la recuperación de este gas producto de la descomposición de la basura orgánica.

![Figura 16. Participación porcentual de gases de efecto invernadero por categoría en el estado de Oaxaca, 2008](image-url)
II. Cuencas Atmosféricas

En el estado de Oaxaca se identificaron cuatro cuencas atmosféricas, ubicadas en las principales localidades (Figura 17). Las características del relieve en esta región ocasionan que las cuencas identificadas sean en su mayoría cerradas y haya sido el relieve una de las características más importantes para su delimitación. En el estado dos cuencas son semi-cerradas y dos más, cerradas. A continuación se presentan las características de las cuencas identificadas para el estado (Tabla 24 y Tabla 25).
Tabla 24. Identificación de las cuencas atmosféricas de Oaxaca

<table>
<thead>
<tr>
<th>No.</th>
<th>Nombre</th>
<th>Estado</th>
<th>Municipios</th>
<th>Zonas urbanas</th>
<th>Población*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oaxaca</td>
<td>Oaxaca</td>
<td>Oaxaca de Juárez, San Agustín de las Juntas, San Agustín Yatareni, San Antonio de la Cal, San Jacinto Amilpas, San Sebastián Tutla, Santa Cruz Xoxocotlán, Santa Lucia del Camino, Santa María Atzompa</td>
<td>Oaxaca de Juárez, Sn Jacinto Amilpas, Sn Agustión Yatareni, Sta Lucia del Camino, Sta Cruz Xoxocotlán</td>
<td>3,633,302</td>
</tr>
<tr>
<td>2</td>
<td>Tuxtepec</td>
<td>Oaxaca</td>
<td>Loma Bonita y San Juan Bautista Tuxtepec</td>
<td>San Juan Bautista Tuxtepec</td>
<td>147,470</td>
</tr>
<tr>
<td>3</td>
<td>La Soledad</td>
<td>Oaxaca</td>
<td>El Barrio de la Soledad, Santo Domingo Petapa, Santa María Petapa</td>
<td>Barrio de la Soledad</td>
<td>35,731</td>
</tr>
<tr>
<td>4</td>
<td>Salina Cruz</td>
<td>Oaxaca</td>
<td>Asunción Ixtaltepec, Chahuites, Cd Ixtepec, Espinal, Juchitán, Reforma, Salina Cruz, San Blas Atempa, Sn Dionisio del Mar, Sn Fco Ixhuatán, Sn Pedro Comitancillo, Sn Pedro Huilotepec, Sn Pedro Tapanatepec, Santiago Niltepec, Chihuitán, Ingenio, Tehuantepec, Zanatepec, Unión Hidalgo</td>
<td>SalinaCruz,Tehuantepec,Ixtepec,Ixtepec,Juchitán, Ventosa,UniónHgo,SnFco Mar,Ixhuatán,Reforma</td>
<td>77,091</td>
</tr>
</tbody>
</table>

* Proyección de CONAPO para el año 2008.

Fuente: Centro Mario Molina (2011)
Tabla 25. Características de las cuencas atmosféricas de Oaxaca

<table>
<thead>
<tr>
<th>No.</th>
<th>Tipo de cuenca</th>
<th>Método</th>
<th>Área (km²)</th>
<th>Gradiente (metros)</th>
<th>Coordenadas UTM del centroide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>Cerrada</td>
<td>Parteaguas</td>
<td>5,892</td>
<td>650</td>
<td>3071456.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Semi-cerrada</td>
<td>División política</td>
<td>1,291</td>
<td>200</td>
<td>3133384.17</td>
</tr>
<tr>
<td>3</td>
<td>Semi-cerrada</td>
<td>División Política y parteaguas</td>
<td>420</td>
<td>75</td>
<td>3234982.19</td>
</tr>
<tr>
<td>4</td>
<td>Cerrada</td>
<td>Pie de montaña</td>
<td>4,296</td>
<td>550</td>
<td>3281316.77</td>
</tr>
<tr>
<td>5</td>
<td>Cerrada</td>
<td>Parteaguas</td>
<td>237</td>
<td>500</td>
<td>3450516.94</td>
</tr>
<tr>
<td>6</td>
<td>Cerrada</td>
<td>Parteaguas y división política</td>
<td>65</td>
<td>200</td>
<td>3498314.81</td>
</tr>
<tr>
<td>7</td>
<td>Cerrada</td>
<td>Parteaguas y división política</td>
<td>735</td>
<td>550</td>
<td>3567800.7</td>
</tr>
<tr>
<td>8</td>
<td>Cerrada</td>
<td>Parteaguas</td>
<td>1,862</td>
<td>75</td>
<td>3572989.31</td>
</tr>
<tr>
<td>9</td>
<td>Semi-cerrada</td>
<td>División Política y parteaguas</td>
<td>2,806</td>
<td>2500</td>
<td>3542514.35</td>
</tr>
</tbody>
</table>

Fuente: Centro Mario Molina (2011)

Fuente: Centro Mario Molina (2011)
<table>
<thead>
<tr>
<th>CUENCA ATMOSFÉRICA DE OAXACA DE JUÁREZ, OAXACA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de cuenca</td>
</tr>
<tr>
<td>Superficie</td>
</tr>
</tbody>
</table>
| **Coordenadas UTM del centroide** | X:3071456.98
Y:545317.82 |
| **Método empleado en la delimitación** | Parteaguas |
| **Gradiente entre el nivel medio del valle y los puntos más elevados** | 650 metros |
| **Temperatura media anual** | 22°C |
| **Principales zonas urbanas al interior de la cuenca atmosférica** | Comité de Domínguez y Las Margaritas |
| **Población de las principales zonas urbanas ubicadas dentro de la cuenca atmosférica** | habitantes (proyección de CONAPO al año 2008) |

Localización geográfica
Colinda al norte con el municipio de San Pablo Etla; al sur con San Antonio de la Cal y Cuilapam de Gurrero; al este con San Andrés Huayapan y Santa Lucía del Camino; al oeste con Santa María Atzompa.

Descripción fisiográfica y del relieve
Se localiza en las planicies de los Valles Centrales, se encuentran las llanuras leves. El cerro del “gallo”, cerro de Monte Albán y su continuación hacia el oriente llamado cerro del Chapulín, y sierra de San Felipe del Agua y la cordillera que se denomina: "Monte Albán".
El nudo mixteco o Zempoaltepec, con una altura de 3,395 metros.
CUENCA ATMOSFÉRICA DE OAXACA DE JUÁREZ, OAXACA

<table>
<thead>
<tr>
<th>Atributos naturales</th>
<th>El río Atoyac, río San Felipe, río Seco, río Salado y río Grande. La vegetación es muy escasa, es en su mayoría abunda son los nopales, órganos y biznagas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clima</td>
<td>Semicálido árido con lluvias en verano</td>
</tr>
<tr>
<td>Precipitación</td>
<td>727.6 mm</td>
</tr>
<tr>
<td>Principales características meteorológicas</td>
<td>Vientos dominantes: el 90 de los vientos provienen del Oeste durante todo el año. Velocidad del viento: 2 a 4 m/s Calmas: 5</td>
</tr>
</tbody>
</table>
CUENCA ATMOSFÉRICA DE TUXTEPEC, OAXACA

<table>
<thead>
<tr>
<th>Tipo de cuenca</th>
<th>Semi-cerrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie</td>
<td>1291 km²</td>
</tr>
</tbody>
</table>
| Coordenadas UTM del centroide | X:3133384.17
| | Y:682879.38 |
| Método empleado en la delimitación | División política |
| Gradiente entre el nivel medio del valle y los puntos más elevados | 200 metros |
| Temperatura media anual | 25.3º C |
| Principales zonas urbanas al interior de la cuenca atmosférica | San Juan Bautista Tuxtepec |
| Población de las principales zonas urbanas ubicadas dentro de la cuenca atmosférica | habitantes (proyección de CONAPO al año 2008) |

Localización geográfica

Limita al norte con municipio de Santa Cruz y Otatílán pertenecientes al estado de Veracruz y el municipio de San Miguel Soyaltepec, al sur con los municipios de Santiago Jocotepec y, al poniente con los municipios de Santa María Jacatepec, San Lucas Ojitlán y San José Chiltepec y al este con los municipios de José Azueta y Playa Vicente, pertenecientes al estado de Veracruz.

Descripción fisiográfica y del relieve

Región poco montañosa, cuenta con algunas planicies a manera de península o herradura, con pequeñas elevaciones menores, que se deprimen para formar las Llanuras de Sotavento.
CUENCA ATMOSFÉRICA DE TUXTEPEC, OAXACA

<table>
<thead>
<tr>
<th>Atributos naturales</th>
<th>Se localiza la cuenca hidrológica del Papaloapan. Existen los ríos existentes son el Tonto, obispo y el Papaloapan; pantanos y lagunas de aguas sulfurosas. La vegetación es característica de la selva media y algunos pastizales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clima</td>
<td>Predomina es el Tropical con lluvias en verano, se presenta un clima húmedo y seco.</td>
</tr>
<tr>
<td>Precipitación</td>
<td>2076 mm</td>
</tr>
<tr>
<td>Principales características meteorológicas</td>
<td>Vientos dominantes: el 80% de viento proviene del Este y Sureste del Papaloapan. Velocidad del viento: 4 a 6 m/s Calmas: 2</td>
</tr>
</tbody>
</table>
CUENCA ATMOSFÉRICA DE BARRIO DE LA SOLEDAD, OAXACA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de cuenca</td>
<td>Semi-cerrada</td>
</tr>
<tr>
<td>Superficie</td>
<td>420 km²</td>
</tr>
<tr>
<td>Coordenadas UTM del centroide</td>
<td>X:3234982.19 Y:551970.36</td>
</tr>
<tr>
<td>Método empleado en la delimitación</td>
<td>División Política y parteaguas</td>
</tr>
<tr>
<td>Gradiente entre el nivel medio del valle y los puntos más elevados</td>
<td>75 metros</td>
</tr>
<tr>
<td>Temperatura media anual</td>
<td>26.5º C</td>
</tr>
<tr>
<td>Principales zonas urbanas al interior de la cuenca atmosférica</td>
<td>Barrio de la Soledad</td>
</tr>
<tr>
<td>Población de las principales zonas urbanas ubicadas dentro de la cuenca atmosférica</td>
<td>habitantes (proyección de CONAPO al año 2008)</td>
</tr>
</tbody>
</table>

Localización geográfica

Al norte colinda con Matías Romero Avendaño y San Juan Guichicovi, al sur con la ciudad de Ixtepec y Guexchoza, al oeste Santa María Guenagati, Santa María Guenagati y Guevea de Humboldt y al este Asunción Ixtaltepec, Santa María Chimalpa y San Miguel Chimalpa.

Descripción fisiográfica y del relieve

Zonas de planicies, pero también son evidentes zonas típicas de sierra, donde predominan cerros con alturas que oscilan entre los 200 a 400 msnm aproximadamente. Como los cerros de la Banderilla, cerro de Palma, cerro Lagunas, cerro La Mojada. El terreno de lomerío es la característica principal del municipio de Santa María Petapa.

Atributos naturales

El río Almoloya, el río Chiquito y el río Petapa. El arroyo los Nanches y Bejuco.
La laguna llano de la Soledad.
La vegetación nativa, como el bosque de pino-encino y selva mediana subperenifolia, además la población cuenta con los siguientes árboles frutales: mango, naranja, mandarina, cafeto, guanábana, granada, papause, papaya, acandón, etc. Distintas variedades de árboles de los cuales se obtiene la madera para la ebanistería, estos son ocote, roble, caoba, cedro, guanacaste, lechemaria, madre cacao, sauce, y Ceiba; cuenta también con arbustos: pinos, zarza, pochote y otras matorrales o malvas y zacatones.

<table>
<thead>
<tr>
<th>Clima</th>
<th>El clima en la mayor parte del año es cálido subhúmedo, con lluvias en el verano.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitación</td>
<td>1650 mm</td>
</tr>
<tr>
<td>Principales características meteorológicas</td>
<td>Vientos dominantes: el 70% de los vientos provienen del Noreste. Durante el invierno aumenta tanto la intensidad como la velocidad del viento. Velocidad del viento: más de 8 m/s Calmas: 7</td>
</tr>
</tbody>
</table>
CUENCA ATMOSFÉRICA DE SALINA CRUZ, OAXACA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de cuenca</td>
<td>Cerrada</td>
</tr>
<tr>
<td>Superficie</td>
<td>4296km²</td>
</tr>
<tr>
<td>Coordenadas UTM del centroide</td>
<td>X:3281316.77 Y:508593.79</td>
</tr>
<tr>
<td>Método empleado en la delimitación</td>
<td>Pie de montaña</td>
</tr>
<tr>
<td>Gradiente entre el nivel medio del valle y los puntos más elevados</td>
<td>550 metros</td>
</tr>
<tr>
<td>Temperatura media anual</td>
<td>28.7°C</td>
</tr>
<tr>
<td>Principales zonas urbanas al interior de la cuenca atmosférica</td>
<td>Salina Cruz, Tehuantepec, Ixtepec, Ixtaltepec, Juchitán, Ventosa, Unión Hgo, Sn Fco Mar, Ixhuatán, Reforma.</td>
</tr>
</tbody>
</table>

Población de las principales zonas urbanas ubicadas dentro de la cuenca atmosférica: habitantes (proyección de CONAPO al año 2008)

Descripción fisiográfica y del relieve: Existe una cadena de cerros en forma de herradura con vista al mar, con caminos transitables para llegar a las agencias municipales de San Antonio Monterrey, San José del Palmar, Boca del Río y la Ventosa.

Localización geográfica: Limita al norte con Santo Domingo Tentepec y San Blas Atempa, al sur con el Océano Pacífico, al oriente con Santo Domingo Tehuantepec y al poniente con San Mateo del Mar y el estado de Chiapas.
CUENCA ATMOSFÉRICA DE SALINA CRUZ, OAXACA

Atributos naturales	Se encuentra situada en el golfo de Tehuantepec, integrado por hermosas playas y puerto, el cual es de gran importancia por la actividad mercantil que desarrolla. Los ríos son Tehuantepec, Juchitán o de los Perros, Chicapa, Niltepec y Ostuta. Las lagunas Superior, Inferior, Mar Tileme y Oriental. El tipo de vegetación predominante que se encuentra en la región es la selva baja, vegetación riparia, selva mediana, bosque de pino-encino y bosque de pino.
Clima	Cálido Subhúmedo, con lluvias todo el año, aunque más abundante en el verano.
Precipitación	1235 mm
Principales características meteorológicas	Vientos dominantes: el 70% de los vientos provienen del Noreste. Durante el invierno aumenta tanto la intensidad como la velocidad del viento. Velocidad del viento: más de 8 m/s Calmas: 7
III. PROCEDIMIENTOS DE CÁLCULO

III.1 Definición de cuencas atmosféricas

De acuerdo con el anteproyecto del Reglamento de la Ley General del Equilibrio Ecológico y Protección al Ambiente en materia de Prevención y Control de Contaminación a la Atmósfera, una cuenca atmosférica se define como un “Espacio geográfico delimitado parcial o totalmente por elevaciones montañosas u otros atributos naturales ocupado por un volumen de aire con características similares”.

Si bien es cierto que las cuencas atmosféricas existen independientemente de que en su interior haya contaminación del aire de origen antropogénico, es evidente que las cuencas prioritarias del país, para fines de gestión de la calidad del aire, serán aquellas que albergan centros urbanos y/o actividades industriales de gran intensidad energética y productiva con una generación importante de contaminantes del aire endógenos que se dispersan, transforman, transportan y depositan en su interior y ciertas porciones de ellos migran a otras cuencas atmosféricas o se bien se incorporan a las capas superiores de la atmósfera.

Por lo anterior, es también relevante la definición de Cuenca Atmosférica Saturada como: “aquella en la que se exceden las normas de calidad del aire de uno o más contaminantes, situación que representa que la capacidad de asimilación de dicha cuenca es rebasada en forma espacial y temporal.

La capacidad de asimilación de contaminantes de una cuenca atmosférica depende de su ventilación la cual está determinada esencialmente por factores meteorológicos y el relieve. Es por ello, que las cuencas cerradas presentan condiciones de ventilación pobres y presentan inversiones térmicas durante las épocas frías del año donde la altura de mezclado es baja y se presenta una estratificación de las masas de aire que afecta significativamente la dispersión de contaminantes en su interior (Figura 18).

Figura 18. Altura de mezclado
a) Altura de mezclado alta: buena dispersión.

b) Altura de mezclado baja: estabilidad atmosférica, dispersión pobre.

c) Efecto posterior, acumulación de aerosoles y gases bajo condiciones pobres de dispersión atmosférica.

De manera general, la administración de la calidad del aire bajo el enfoque de cuencas atmosféricas, se basa en los siguientes principios básicos (Figura 19):

1. Una gestión moderna de la calidad del aire requiere de un enfoque integral que contemple las emisiones de contaminantes criterio y de efecto invernadero a nivel local, regional y global. En muchos casos existen co-beneficios en medidas preventivas, correctivas y de sustitución tecnológica con resultados muy favorables.

Figura 19. Niveles de gestión de calidad del aire

2. Las cuencas atmosféricas tienen diferente capacidad de asimilación, por lo que en dos sitios con una misma carga de emisión de contaminantes, las concentraciones de ellos pueden variar sustancialmente en forma espacial y temporal.

3. Parte de los contaminantes que se generan en una cuenca atmosférica son transportados a otras cuencas atmosféricas aledañas ya sea en su forma original o como contaminantes secundarios. La Figura 20 muestra el transporte regional de los partículas secundarias (sulfatos) generados por el SO$_2$ proveniente de las instalaciones del sector energía localizadas en Tula.

Fuente: Centro Mario Molina (2009)
Finalmente, es importante señalar que las experiencias internacionales revisadas indican que la gestión de la calidad del aire bajo el concepto cuencas atmosféricas requiere de la conformación de un grupo de trabajo con especialistas de instituciones públicas y privadas que integren un grupo técnico el cual promueva medidas y programas proactivos para la gestión eficaz de la calidad del aire en la cuenca atmosférica. Un elemento esencial en la toma de decisiones de ese grupo de trabajo es que todas las medidas, acciones y programas que se generen deben basarse en conocimientos técnicos y científicos.

III.1.1 Criterios Metodológicos para la delimitación cuencas atmosféricas a nivel regional

Para fines del presente estudio se consideran como cuencas atmosféricas prioritarias en cada región aquellas en las que su interior exista una o varias poblaciones con más de 150 000 habitantes y que involucren un uso intensivo de energéticos asociados a los sistemas de transporte, servicios públicos o bien aquellas donde se ubiquen instalaciones industriales que generen más de 100 toneladas de contaminantes criterio o precursores.

En estas zonas se reconocerán las características fisiográficas y meteorológicas con la finalidad de identificar los límites naturales de las zonas y las masas de aire comunes en los niveles superficiales.

Para fines del presente estudio regional se considerarán tres tipos de cuencas atmosféricas: Cerradas, semi-cerradas y abiertas.

Se denomina como cuenca cerrada aquella que se encuentra rodeada por elevaciones montañosas en más de un 50% de su perímetro poligonal, cuando colinden con el mar u otro cuerpo de agua no perene; y en un 70 % de su poligonal cuando la cuenca no colinde con cuerpos de agua. Además, se considera un gradiente de alturas entre el nivel medio del valle y el parte aguas de las montañas que lo circundan, mayor a 150 metros.
Las cuencas **semi-cerradas** son aquellas en las que elevaciones montañosas oscilan entre 40 y 70% de su perímetro poligonal.

Las cuencas **abiertas** son aquellas en las que las elevaciones montañosas no circundan en más de un 40% al área de estudio.

Por otra parte, es importante señalar que la delimitación de una cuenca atmosférica será esencialmente para fines de gestión de la calidad del aire, por lo que es válido utilizar límites políticos o criterios jurisdiccionales que faciliten su manejo desde un punto de vista institucional, por lo que la delimitación de una cuenca atmosférica puede modificarse en función de los estudios de diagnóstico efectuados en la misma o bien para facilitar su gestión.

III.2 Procedimiento para determinar el consumo de energía

El consumo de energía de una zona o región se calcula a partir de los volúmenes de combustibles fósiles consumidos o demandados a nivel estatal o a nivel municipal, en caso de estar disponible dicha información. Para determinar este consumo de energía se siguen los pasos descritos a continuación.

III.2.1 Recopilación de datos

1. Definir el año – base del estudio. En el caso del presente, se seleccionó como base el año 2008, dado el nivel de información disponible para la integración de el Inventario de Emisiones de Gases de Efecto Invernadero.

2. Obtener datos sobre los volúmenes de combustibles fósiles consumidos o demandados a nivel estatal o municipal, en caso de así requerirse y contar con información disponible. Los combustibles a considerar son:
 a. Gasolinas (Premium y Magna).
 b. Diesel.
 c. Turbosina (queroseno).
 d. Combustóleo.
 e. Carbón.
 f. Coque de petróleo.
 g. Gas natural.
 h. Gas licuado de petróleo.
 i. Leña.
Estos datos están disponibles en las Prospectivas de Petrolíferos, Gas Natural y Gas Licuado de Petróleo 2010-2025 o las más actuales que se encuentren disponibles en el portal de internet de la Secretaría de Energía (http://www.sener.gob.mx/portal/publicaciones.html) (ver Imagen 1); o bien, en la sección de Información Estadística de su Sistema de Información Energética (http://sie.energia.gob.mx/sie/bdiController) (ver Imagen 2).

III.2.2 Procesamiento y análisis de la información

1. Transformar los datos de consumo o demanda de combustibles expresados en unidades de volumen a unidades de energía (Petajoules). Para lo cual, estos datos se multiplican por su correspondiente poder calorífico neto según el combustible. En el caso de que correspondan al consumo diario, deben multiplicarse por 365 para obtener el consumo anual.

El poder calorífico por tipo de combustible se puede consultar en el Balance Nacional de Energía 2009 o el más actualizado elaborado por la Secretaría de Energía y disponible en el sitio de Publicaciones de su portal de internet.

Imagen 1. Portal de Publicaciones de la Secretaría de Energía
Los resultados de consumo de energía se pueden mostrar por tipo de combustible o por sector, para lo cual se debe tomar en cuenta, en caso de ser explícito como en el caso del gas natural y el gas licuado de petróleo, la sectorización de la Secretaría de Energía, o bien considerar los tipos de combustibles utilizados por cada sector:

a. **Sector Transporte**: Gasolinas, diesel, turbosina, gas licuado de petróleo y gas natural.
b. **Sector Eléctrico**: Combustóleo, coque de petróleo, diesel, gas natural y carbón.
c. **Sector Industrial**: Combustóleo, coque de petróleo, gas licuado de petróleo, gas natural y diesel.
d. **Sector Residencial**: Gas licuado de petróleo, gas natural y leña.
e. **Sector Servicios**: Gas licuado de petróleo y gas natural.
f. **Sector Agropecuario**: Gas licuado de petróleo.

Nota: Los consumos de energía por tipo de combustible y por sector deben ser coincidentes.
Consumo de energía eléctrica

III.3 Procedimiento para elaborar un Inventario de Gases de Efecto Invernadero

El Inventario Regional de Emisiones de Gases de Efecto Invernadero se elaboró con base en la estimación de emisiones generadas de acuerdo a las categorías recomendadas por el Panel Intergubernamental de Cambio Climático, considerando el 2008 como año base con una resolución espacial a nivel estatal. Estas categorías son:

a. Energía.- Se calculan las emisiones de GEI provenientes de las principales fuentes de combustión definidas por el IPCC, en las que se incluyen la generación de electricidad, el transporte y la industria manufacturera.

b. Procesos Industriales.- Se estiman las emisiones generadas por la industria, de acuerdo a las materias primas y compuestos específicos que son utilizados o transformados física o químicamente para la producción de bienes.

c. Agricultura, ganadería y cambio de uso de suelo.- Con respecto a la agricultura, las estimaciones realizadas corresponden a las emisiones de metano, monóxido de carbono (CO) y óxido nitroso (N₂O) procedentes de los residuos de las cosechas.

En cuanto a la ganadería, se estiman las emisiones de metano y óxido nitroso provenientes de la fermentación entérica, es decir, del proceso digestivo de los animales herbívoros y, del manejo de estiércol, por su descomposición en condiciones anaeróbicas, que se presentan generalmente cuando se cría un número elevado de animales en un área confinada.

Con relación a los suelos agrícolas se estiman las emisiones directas de óxido nitroso provenientes de la producción animal y del sector agrícola en forma de urea y amoniaco, generadas por el uso de fertilizantes.

d. Residuos.- Son emisiones estimadas provenientes del manejo y disposición de los residuos sólidos urbanos. En el caso de los primeros, se producen cantidades significativas de metano (CH₄) y óxido nitroso (N₂O) durante su proceso de descomposición.

En caso de las sub-categorías de generación de energía eléctrica, transporte, industrias de manufactura y combustión residencia y comercial, se llevó a cabo un nivel metodológico 3. Lo anterior, debido a que se contó con información por tipo y volumen de combustibles consumidos, así como el tipo de tecnologías empleadas en procesos industriales y de combustión. Para estimar las emisiones de bióxido de carbono (CO₂), metano (CH₄) y óxido nitroso (N₂O), se emplearon factores de emisión del AP-42 de la
Agencia de Protección Ambiental de los Estados Unidos (*USEPA, por sus siglas en inglés*), mismos que fueron corroborados a partir del balance de masa para los contenidos típicos de carbono de los combustibles disponibles en México. Cabe señalar que dichos factores se encuentran dentro del rango de los factores de emisión considerados por el IPCC.

En el caso de quemas agrícolas e incendios forestales, se emplearon los mismos factores del AP-42. Sin embargo, es importante señalar que el CO\(_2\) no fue considerado para el cálculo de emisiones por incendios forestales debido a que se considera parte del Ciclo de Carbono (IPCC).

En la Tabla 26 se presentan las principales características del Inventario de GEI elaborado por el Centro Mario Molina.

Tabla 26. Características de Inventario de emisiones de Gases de Efecto Invernadero (GEI)

<table>
<thead>
<tr>
<th>Cobertura Geográfica</th>
<th>AÑO BASE 2008</th>
<th>NIVEL METODOLÓGICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oaxaca, México</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEI</th>
<th>CO(_2), CH(_4), N(_2)O</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Resolución espacial</th>
<th>Nivel estatal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tipos de categorías</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía</td>
<td>Industrias energéticas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Transporte</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Industrias de manufactura</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Combustión residencial y comercial</td>
<td>3</td>
</tr>
<tr>
<td>Procesos Industriales</td>
<td>Industria del cemento y la cal</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Industria del vidrio</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Industria de minerales</td>
<td>3</td>
</tr>
<tr>
<td>Agricultura y Ganadería</td>
<td>Fermentación entérica</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Manejo de estiércol</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Quemas agrícolas</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tierras de cultivo</td>
<td>1</td>
</tr>
<tr>
<td>Residuos</td>
<td>Disposición de residuos sólidos</td>
<td>1</td>
</tr>
<tr>
<td>Uso de suelo y vegetación</td>
<td>Cambio de uso de suelo</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Incendios Forestales</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Centro Mario Molina (2011)
Los principales aspectos metodológicos generales y los específicos de cada categoría ser refieren a continuación:

III.3.1 Gases evaluados

El inventario incluyó específicamente las estimaciones de los tres principales gases de efecto invernadero (GEI): dióxido de carbono (CO$_2$), metano (CH$_4$) y óxido nitroso (N$_2$O); dentro de los cuales, el CO$_2$ es considerado como el gas de referencia, mientras que las otras emisiones de los otros gases se convierten en equivalentes de CO$_2$ como se indica a continuación.

III.3.1.1 Potenciales de calentamiento global

Los potenciales de calentamiento global utilizados para determinar el total de bióxido de carbono equivalente emitido por el estado se muestran en la Tabla 17.

III.3.2 Energía

Conforme a las directrices del IPCC, la categoría de Energía se subdivide en 4 subcategorías: Producción de Energía Eléctrica, Transporte, Industrias de Manufactura y Combustión Residencial y Comercial

III.3.2.1 Producción de Energía Eléctrica

Incluye las empresas públicas y privadas de producción de energía eléctrica cuyas tecnologías predominantes son termoeléctricas de vapor, ciclos combinados, turbinas de gas, motores de combustión interna. Las emisiones de bióxido de carbono (CO$_2$), metano (CH$_4$) y óxido nitroso (N$_2$O) fueron estimadas a partir del uso de factores de emisión del AP-42 de la EPA y corroborados a partir del balance de masa de carbono (C) para los contenidos típicos de %C de los combustibles disponibles en México. Los principales combustibles usados por la industria eléctrica nacional son gas natural y combustóleo, mientras que el carbón y diesel se usan en menor escala. El inventario involucró la evaluación individual de 83 plantas de producción eléctrica en el país.

III.3.2.2 Autotransporte

Para el cálculo de las emisiones presentadas en este documento se considera únicamente el subsector de vehículos automotores. El consumo de combustibles se estimó a través del modelo vehicular desarrollado por el Centro Mario Molina y se comparó con los consumos de combustible reportados por Pemex a nivel estatal de gasolinas Magna y Premium y de Diesel.

Las emisiones de CO$_2$ correspondientes fueron calculadas a partir del balance de carbono contenido en cada combustible, mientras que en los casos de CH$_4$ y N$_2$O se usaron los factores de emisión del IPCC.

III.3.2.3 Industrias de Manufactura

Las emisiones de GEI asociadas al consumo de energía a partir de los procesos de combustión de las industrias de manufactura se efectuaron con la información proporcionada por SEMARNAT a través de su área de Inventario de Emisiones, donde se
Plan de acción temprana ante el cambio climático para el estado de Oaxaca
Inventario de emisiones del estado de Oaxaca

...dispuso de información de 4,850 empresas de jurisdicción federal y estatal para la estimación conducente de las emisiones. En la Tabla 27 se muestran los parámetros calculados y los sectores que se incluyeron en la categoría de manufactura. Al igual que en el Sector Eléctrico, los factores usados fueron del AP-42 de EPA.

Tabla 27. Emisiones de gases efecto invernadero en el sector energía

<table>
<thead>
<tr>
<th>Industrias de Manufactura</th>
<th>Emisiones GEI (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂</td>
</tr>
<tr>
<td>Industria alimentos y bebidas</td>
<td>✓</td>
</tr>
<tr>
<td>Industria automotriz</td>
<td>✓</td>
</tr>
<tr>
<td>Industria celulosa y papel</td>
<td>✓</td>
</tr>
<tr>
<td>Industria cemento y cal</td>
<td>✓</td>
</tr>
<tr>
<td>Industria del petróleo</td>
<td>✓</td>
</tr>
<tr>
<td>Industria del vidrio</td>
<td>✓</td>
</tr>
<tr>
<td>Industria madera</td>
<td>✓</td>
</tr>
<tr>
<td>Industria minerales</td>
<td>✓</td>
</tr>
<tr>
<td>Industria pinturas y tintas</td>
<td>✓</td>
</tr>
<tr>
<td>Industria química</td>
<td>✓</td>
</tr>
<tr>
<td>Industria textil</td>
<td>✓</td>
</tr>
<tr>
<td>Otras industrias</td>
<td>✓</td>
</tr>
<tr>
<td>Productos de asfalto</td>
<td>✓</td>
</tr>
</tbody>
</table>

Fuente: Centro Mario Molina (2011)

III.3.2.4 Combustión Residencial y Comercial

Para el cálculo de las emisiones provenientes de este sector, se ocuparon los datos de combustión residencial y comercial de GLP y GN, de las prospectivas del mercado de gas licuado de petróleo y de gas natural 2009-2024 publicadas por la Secretaría de Energía, las emisiones de gases efecto invernadero y contaminantes criterio fueron estimadas a partir del uso de factores de emisión del AP-42 de la Agencia de Protección Ambiental de Estados Unidos (EPA).

III.3.3 Procesos industriales

Bajo las directrices del IPCC las emisiones de procesos industriales se refieren a aquellas emisiones de GEI que no se generan a través de procesos de combustión. En el Inventario de Emisiones desarrollado se calcularon esencialmente las emisiones de CO₂ generadas por las industrias del Cemento y Cal; así como por Vidrio y minerales, dondese tienen reacciones de descarbonización, generando 0.42 toneladas de CO₂ por cada tonelada de caliza calcinada:

\[
Ca (CO₃) → CaO + CO₂↑
\]
III.3.4 Agricultura, ganadería, uso de suelo y vegetación

La metodología utilizada para el presente estudio, es la Guía de las Buenas Prácticas publicada por el Panel Intergubernamental sobre el Cambio Climático (IPCC), (Simon Eggleston, 2006).

Para el cálculo de las emisiones provenientes de cambio de uso de suelo y la vegetación, se realizó una revisión de la evolución de los usos de suelo de suelo nacional, además de estimar sus tasas de cambio para los años de 1976 al 2008, a fin de comparar multitemporalmente la zona. En esta categoría se estiman las emisiones de CO₂ generadas por el cambio de uso de suelo, así como las emisiones de óxido nitroso (N₂O) y metano (CH₄) provenientes de la agricultura y ganadería y de incendios forestales. En la Figura 21 se muestra el cambio de uso de suelo para el estado de Oaxaca.

El procedimiento para realizar este cálculo es el siguiente:

III.3.4.1 Recopilación de Datos del Área Natural Protegida

Recopilar información cartográfica de la zona de estudio para el periodo a analizar. En el caso de las zonas prioritarias definidas para el presente estudio, se compararon los años 1976 y 2008, para lo que se utilizó la cartografía publicada por el Instituto Nacional de Estadística y Geografía (INEGI) escala 1:250,000.

La información referente a parámetros regionales de los bosques y selvas mexicanos se solicitó al Instituto Nacional de Ecología (INE) y se consultó a la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) datos sobre los incendios forestales registrados para el año 2008 en la ANP, así como características típicas de la zona.

La información relacionada con el tipo y número de cabezas de ganado en la ANP, así como del tipo de cultivos existentes se solicitó a la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA).

Uso de Suelo Oaxaca 1976

- Agricultura: 13%
- Selva: 34%
- Pastizal: 12%
- Matorral: 1%
- Cuerpo de agua: 1%
- Otros tipos de vegetación: 1%

Uso de Suelo Oaxaca 2008

- Agricultura: 16%
- Selva: 29%
- Pastizal: 16%
- Matorral: 0%
- Cuerpo de agua: 2%
- Otros tipos de vegetación: 1%
- Cuerpo de agua: 2%
III.3.4.2 Procesamiento y análisis de la información

III.3.4.2.1 Estimación de emisiones por Uso de Suelo y Vegetación

1. Las emisiones por cambio de uso de suelo y vegetación se estiman a partir de los flujos de carbono, considerando los datos de las superficies a analizar, de acuerdo con los usos de suelo registrados y su dinámica de cambio, mediante un programa de georeferenciación.

2. Para las ANP analizadas se realizó la intersección de la cartografía de los años 1976 y 2008, dando como resultado datos del área en estudio en dos tiempos diferentes, los cuales se superponen en una matriz para determinar la dinámica del cambio de uso de suelo y la vegetación. Los datos arrojados se analizan estadísticamente para identificar las zonas donde se ha perdido vegetación y el uso de suelo actual, así como para identificar las zonas que permanecen sin cambio durante el periodo analizado.

3. El flujo de carbono se estimó para cada uno de los tipos de uso de suelo predominantes en Oaxaca, incluyendo las tierras que permanecen y las que han cambiado de uso. Los usos de suelo encontrados se muestran en la Tabla 20. Las ganancias de carbono se atribuyen al crecimiento de la biomasa y a la transferencia de un depósito a otro; así mismo, las pérdidas se atribuyen a la disminución de biomasa debido a la degradación, deforestación e incendios (Simon Eggleston, 2006).

La estimación de los almacenes y flujos de carbono depende de la disponibilidad de información, por lo que para este estudio se consideraron los depósitos como: biomasa aérea y subterránea, así como los almacenes de carbono en suelos minerales. Para cada uno, en base a las hectáreas, se estima la existencia de carbono en dos momentos dados, en este caso 1976-2008. Para determinar este almacén de carbono se utiliza la Ecuación 1.

\[
\Delta C = \frac{C_2 - C_1}{t_2 - t_1} \quad \text{Ecuación 1}
\]

Donde:

\(\Delta C \) = Cambio en las existencias anuales de carbono en un depósito de carbono, tC/año.

\(C_1 \) = Carbono en el depósito en el primer tiempo, tC/año.

\(C_2 \) = Carbono en el depósito en el segundo tiempo, tC/año.

Nota: El carbono en los depósitos son el producto de las superficies y las estadísticas de contenidos de carbón por tipo de vegetación y clima. Para obtener este parámetro se utilizan los datos regionalizados para México, elaborados para el Inventario Nacional de Emisiones de Gases de Efecto Invernadero.
4. Posteriormente, para obtener el flujo de carbono por tipo de vegetación, se realiza la sumatoria de los depósitos encontrados en el mismo (Ecuación 2).

\[\sum \Delta C_V = \Delta C_{d1} + \Delta C_{d2} + \Delta C_{d3} \quad \text{Ecuación 2} \]

Donde:

\[\sum \Delta C_V = \text{Variación en las existencias de carbono en un tipo de vegetación (forestal, pastizal, agrícola etc.), ton C/año.} \]
\[\Delta C_{d1,2,3...} = \text{Cambio en las existencias anuales de carbono en un depósito de carbono, ton C/año.} \]

5. Para obtener la variación de carbono en el ANP, se realiza la sumatoria de la variación en las existencias de carbono de todos los tipos de vegetación ubicados en la zona, utilizando la Ecuación 3.

\[\sum \Delta C_{\text{ANP}} = \Delta C_{V1} + \Delta C_{V2} + \Delta C_{V3} + \Delta C_{V4} + \Delta C_{V5} \quad \text{Ecuación 3} \]

Donde:

\[\sum \Delta C_{\text{ANP}} = \text{Variación en las existencias de carbono en la ANP, ton C/año.} \]
\[\Delta C_{V1,2,3...} = \text{Variación en las existencias de carbono por tipo de vegetación (forestal, pastizal, agrícola etc.), tC/año.} \]

6. Finalmente para estimar el contenido de carbono en la zona, se realiza un balance considerando las ganancias y las pérdidas de carbono en biomasa (Ecuación 4).

\[C_{\text{ANP}} = \Delta C_G - \Delta C_P \quad \text{Ecuación 4} \]

Donde:

\[C_{\text{ANP}} = \text{Existencias de carbono en la ANP, ton C/año.} \]
\[\Delta C_G = \text{Ganancias de carbono en la ANP, ton C/año.} \]
\[\Delta C_P = \text{Perdidas de carbono en la ANP, ton C/año.} \]

Ya que no todos los cambios en las existencias de carbono corresponden a una emisión (Simon Eggleston, 2006), para determinar si existe una ganancia o una pérdida de carbono, se utilizan los signos (+/−). Una cifra positiva corresponde a una captación de carbono, mientras que un signo negativo corresponde a una emisión a la atmósfera. Sin embargo, estas variaciones se pueden expresar en unidades de CO₂. Para efectos de reporte, se utiliza por convención el signo
positivo para expresar una emisión a la atmósfera y el signo negativo para una captura o absorción de la atmósfera.

En la Figura 22 se muestra el procedimiento descrita anteriormente.

Figura 22. Diagrama de flujo para la categoría AFOLU

- **Recopilación de información**
 - Fuentes Oficiales (INEGI, SEMARNAT, INE, SAGARPA, UNAM)

- **Procesamiento de datos**
 - Programa de Georeferenciación
 - Análisis Estadístico

- **Cálculos**
 - Directrices del IPCC

- **Inventario AFOLU**
En la Figura 23 se muestra un esquema del flujo de los cálculos y las ecuaciones utilizadas para cada uno.

Figura 23. Diagrama de flujo el procedimiento del cálculo de emisiones de cambio de uso de suelo y ganadería y agricultura
III.3.5 Estimación de emisiones por Agricultura y Ganadería

En este apartado se consideraron las emisiones de CH₄ derivadas de la fermentación entérica y las de CH₄ y de N₂O provenientes del manejo de estiércol del ganado. Cabe mencionar que las emisiones de CO₂ procedentes del ganado por convención no se estiman, debido a que se consideran absorbidas por la vegetación, forman parte del ciclo de carbono y una parte del carbono se devuelve como metano, por lo que requiere una estimación aparte (Simon Eggleston, 2006).

En este sentido lo más importante es identificar el tipo de ganado existente en la zona, en México el ganado más abundante en orden de consumo, son las aves de corral (pollos sobretodo), el porcino y el vacuno (INEGI, 2008).

III.3.5.1 Fermentación entérica

La estimación del metano de la fermentación se basa en factores de emisión obtenidos de los documentos del IPCC (Simon Eggleston, 2006). Debido a la falta de información de ganado específica para cada ANP, el nivel metodológico utilizado fue el número 1. Sin embargo, se requiere conocer la población ganadera y sus características para elegir los factores de emisión adecuados. A continuación se presenta la ecuación utilizada para esta estimación.

\[
E_{\text{de Ganado}} = \sum \left[(FE) \times (# \text{ de cabezas}) \right]_{t1} + [(FE) \times (# \text{ de cabezas})]_{t2} + \ldots \text{ Ecuación 5}
\]

\[\text{Donde:}\]
Emisiones de ganado = Emisiones de ganado en Ton/año
FE = Factores de Emisión Kg de CH₄/cabeza-año
de cabezas = Número de cabezas de ganado
T = tipo de ganado

La Tabla 28 muestra los factores de emisión utilizados para la valoración de las emisiones procedentes de la fermentación entérica.
Plan de acción temprana ante el cambio climático para el estado de Oaxaca
Inventario de emisiones del estado de Oaxaca

Tabla 28. Factores de emisión por fermentación entérica para el método de nivel 1 (kg CH\(_4\)/cabeza-año)

<table>
<thead>
<tr>
<th>Ganado</th>
<th>Países desarrollados</th>
<th>Países en desarrollo</th>
<th>Peso en pie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Búfalo</td>
<td>55</td>
<td>55</td>
<td>300 Kg</td>
</tr>
<tr>
<td>Ovinos</td>
<td>8</td>
<td>5Fu</td>
<td>65 Kg – países desarrollados</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 Kg – países en desarrollo</td>
</tr>
<tr>
<td>Caprino</td>
<td>5</td>
<td>5</td>
<td>40 Kg</td>
</tr>
<tr>
<td>Camélidos</td>
<td>46</td>
<td>46</td>
<td>570 Kg</td>
</tr>
<tr>
<td>Equinos</td>
<td>18</td>
<td>18</td>
<td>550 Kg</td>
</tr>
<tr>
<td>Mulas y asnos</td>
<td>10</td>
<td>10</td>
<td>245 Kg</td>
</tr>
<tr>
<td>Ciervos</td>
<td>20</td>
<td>20</td>
<td>120 Kg</td>
</tr>
<tr>
<td>Alpacas</td>
<td>8</td>
<td>8</td>
<td>65 Kg</td>
</tr>
<tr>
<td>Porcinos</td>
<td>1.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Aves de corral</td>
<td>Datos insuficientes para el cálculo</td>
<td>Datos insuficientes para el cálculo</td>
<td></td>
</tr>
<tr>
<td>Otros (p. ej. Llamas)</td>
<td>A determinar(^1)</td>
<td>A determinar(^1)</td>
<td></td>
</tr>
</tbody>
</table>

Todas las estimaciones llevan una incertidumbre de ±30-50%.
\(^1\) Un método para el desarrollo de los factores de emisión aproximados es usar el factor de emisión del Nivel 1. Los valores de peso en pie se incluyeron con este propósito. Los factores de emisión deben derivarse sobre la base de las características de ganado y de los alimentos de interés, y no deben restringirse únicamente a las características de la región.

Fuente: Directrices del IPCC, Volumen 4, Capítulo 10

III.3.5.2 Manejo de Estiércol

En esta sub-categoría se incluyen las emisiones de: 1) El metano del estiércol y de la descomposición anaeróbica del mismo y 2) El óxido nitroso formado directamente desde el suelo. Estas dos incluyen tanto las emisiones de las excretas con tratamiento y las depositadas en los pastizales, mismas que implican bosta y orina producidos por el ganado (Simon Eggleston, 2006).

El cálculo para el metano se basa en factores de emisión, aplicando la ecuación 5 y los factores de emisión correspondientes a esta actividad, mismos que se presentan en la Tabla 29.

El cálculo para el N\(_2\)O implica el uso de información más específica por tipo de ganado, con parámetros recopilados de las directrices del IPCC, para los cuales se aplica la ecuación 6, que se muestra a continuación:

\[\text{Emisiones de } N_2O = \sum_t \left\{ \left(\# \text{ cabezas} \times N \times FN \right) \times \left(FE \right) \right\} + \frac{44}{28} \]

Ecuación 6
Donde:
Emisiones de N\textsubscript{2}O = Emisiones de óxido nitroso en ton/ año
Cabezas = población ganadera
t = tipo de ganado
N = promedio anual de excreción por tipo de ganado, por cabeza en Kg /animal
FN = fracción de excreción anual de nitrógeno de cada especie, adimensional.
FE = factor de emisión de N\textsubscript{2}O kg para el tipo de gestión en el país, KgN\textsubscript{2}O-N por cabeza/kg de Nitrógeno.
44/28 = Conversión de emisiones de N\textsubscript{2}O-N a emisiones de N\textsubscript{2}O.

| Tabla 29. Factores de emisión para estimar el metano por manejo de estiércol de ganado (Kg CH\textsubscript{4}/cabeza-ano) |
|-------------|-----------------|-----------------|-----------------|
| Ganado | Factores de emisión de CH\textsubscript{4} según la temperatura promedio anual (°C) | |
| | Fría (<15°C) | Templada (15 a 25°C) | Caliente (>25°C) |
| Ovinos | | | |
| - Países desarrollados | 0.19 | 0.28 | 0.37 |
| - Países en desarrollo | 0.10 | 0.15 | 0.20 |
| Caprinos | | | |
| - Países desarrollados | 0.13 | 0.20 | 0.26 |
| - Países en desarrollo | 0.11 | 0.17 | 0.22 |
| Camélidos | | | |
| - Países desarrollados | 1.58 | 2.37 | 3.17 |
| - Países en desarrollo | 1.28 | 1.92 | 2.56 |
| Equinos | | | |
| - Países desarrollados | 1.56 | 2.34 | 3.13 |
| - Países en desarrollo | 1.09 | 1.64 | 2.19 |
| Mulas y asnos | | | |
| - Países desarrollados | 0.76 | 1.10 | 1.52 |
| - Países en desarrollo | 0.60 | 0.90 | 1.20 |
| Aves de corral | | | |
| - Países desarrollados | | | |
| Ponedoras (seco) | 0.03 | 0.03 | 0.03 |
| Ponedores (húmedo) | 1.20 | 1.40 | 1.40 |
| Parrilleros | 0.02 | 0.02 | 0.02 |
| Pavos | 0.09 | 0.09 | 0.09 |
| Patos | 0.02 | 0.03 | 0.03 |
| - Países en desarrollo | 0.01 | 0.02 | 0.02 |

Fuente: Directrices del IPCC, Volumen 4, Capítulo 10
III.3.6 Estimación de emisiones por Incendios Forestales

Para evaluar las emisiones provenientes de los incendios forestales, se tomó como punto de partida los datos del inventario Nacional GEI, que a su vez, utilizan igualmente las directrices del IPCC, encontrándose como emisiones NO-CO$_2$ provenientes del quemado de biomasa, en las cuales se evalúa el CH$_4$, N$_2$O y el CO.

Como primera instancia la información utilizada es la proporcionada por CONAFOR en cuanto a las estadísticas de incendios forestales llevados a cabo en el año base del inventario (2008). El cálculo se basa en factores de emisión por Kg de materia seca contenida en la vegetación, esto se refiere a la carga de combustible comprendida por tipo de vegetación incendiado y el tipo de incendio.

La ecuación utilizada es la presentada a continuación:

\[
\text{Emisión} = A \times m \times fb \times FE \times 10^6
\]

Ecuación 7

Donde:

- Emisión = Cantidad de gas emitido, Kg de GEI.
- A = Área quemada, ha.
- m = cantidad de combustible, Kg de materia seca/ha.
- fb = Fracción de biomasa consumida, adimensional.
- FE = factor de emisión g de contaminante/Kg de materia seca.

Se usaron los datos por default de contenido de combustible y fracción de biomasa, correspondientes a cada tipo de vegetación y los factores de emisión correspondientes para cada gas. A continuación se presentan los factores de emisión utilizados en el inventario nacional por tipo de vegetación predominante (Tabla 30).

Tabla 30. Factores de emisión utilizados para incendios forestales

<table>
<thead>
<tr>
<th>Tipo de vegetación</th>
<th>CO$_2$</th>
<th>CH$_4$</th>
<th>N$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosques extratropicales</td>
<td>1,569</td>
<td>4.7</td>
<td>0.26</td>
</tr>
<tr>
<td>Bosques tropicales</td>
<td>1,580</td>
<td>6.8</td>
<td>0.20</td>
</tr>
<tr>
<td>Sabanas y pastizales</td>
<td>1,613</td>
<td>2.3</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Fuente: Inventario Nacional de Emisiones de Gases de Efecto Invernadero. 2006

III.3.7 Residuos Sólidos

Se estimaron las emisiones provenientes de la disposición final de los residuos sólidos urbanos, dado que en esta parte del proceso generan cantidades significativas de metano (CH$_4$) y oxido nitroso (N$_2$O) durante la fase de descomposición.
Plan de acción temprana ante el cambio climático para el estado de Oaxaca
Inventario de emisiones del estado de Oaxaca

IV. REFERENCIAS BIBLIOGRÁFICAS

- PUERTO SALINA CRUZ. Disponible en: http://www.puerto-de-salinacruz.com.mx/web/php/esp/?eCodSeccion=1